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We investigate the capabilities of Large Language Models (LLMs) to interact with application programming
interfaces based on documentation and logical instructions, specifically in the context of Geographic Question
Answering for route optimization. A Continuous Retrieval-Augmented Generation method combined with
LLMs, where customized node-based storage is implemented, followed by vector search retrieval. A comparative
analysis of Gemma 2 and LLaMA 3.1 models demonstrates the method’s potential and flexibility in handling
complex queries. The paper’s extension will evaluate the framework using the METEOR 1 and BERTScore 2

metrics, providing insights into their specialized knowledge and performance.
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1 INTRODUCTION
Recent advancements in Natural Language Processing (NLP) and Large Language Models, known
as transformers, have been adapted across various fields [Chang et al. 2023]. Knowledge Graphs
(KGs) aid in converting complex data into organized network entities, thereby enabling users to
query and extract information effectively. The integration of KGs can improve search engines by
analyzing both semantic and structured data. Relationships and semantic connections excel at
representing complex domains linking data through ontologies [Ji et al. 2021]. However, as the
scale and diversity of information grows, there is an increasing need for more flexible, efficient,
and contextually aware retrieval methods. Vectorized databases represent a significant evolution
in information storage and retrieval when paired with solutions like vector search [Kersten et al.
2018]. Encoding data into high-dimensional vectors, enables advanced search capabilities beyond
keyword matching, allowing for similarity-based retrieval using embedding [Reimers and Gurevych
2019]. This shift handles unstructured data more effectively, suitable for topic-specialized chatbots
that can access and process vast amounts of information retrieving facts based on similarity.
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Fig. 1. Overview of CRAG, architecture and usage

Vectorized storage, search, and retrieval are built on the foundations of knowledge graphs but
extend their capabilities in dynamism and scalability. Question Answering (QA) is an emerging
field with the support of LLMs whose goal is to generate automated answers for questions asked
in natural language [Zhuang et al. 2024]. Yet, spatial information poses higher challenges such
as the calculation of spatial proximity between two locations [Mai, Janowicz, R. Zhu, et al. 2021].
These difficulties primarily arise because polygon-based geographic operations are computationally
expensive. Geographic Question Answering (GQA) focuses on the development of systems that can
respond to questions containing geographical information with high accuracy [Mai, Janowicz, Cai,
et al. 2020]. Utilizing REST API 3 as a point of knowledge distribution grants access to vast pools
of specialized data. However, effectively leveraging this information often requires adherence to
rigid rules dictating how it should be used. Time-consuming and complex when addressing diverse
queries. The interactive use of LLMs introduces flexibility, thanks to their capabilities. Despite
their potential, most solutions still rely on pre-trained extensively labeled data, which can restrict
applicability. Retrieval-augmented generation addresses the limitations of pre-trained models,
which often demand substantial hardware resources. By leveraging external knowledge sources,
RAG reduces these dependencies, enabling more flexible knowledge. Our interactive approach
employs human-in-the-loop techniques and a learned reasoning to understand and provide accurate
responses, with specialized information sourced from API endpoints. The Continuous RAG (CRAG)
uses a semi-structured pipeline, continuously updating its knowledge base. This iterative process
ensures that RAG maintains up-to-date and tuned responses, as explained under Algorithm 1.

2 METHOD
Specialized knowledge demands extensive training in specific domains, along with advanced
reasoning capabilities [Gao et al. 2023]. Techniques like RAG can provide domain-specific responses.
The work by [Ye et al. 2024], has demonstrated innovative approaches to question-answering
GIS data. ConvRAG integrates question refinement, RAG, and a self-check mechanism to grant
improved question comprehension and information retrieval in conversational environments. We
leverage external databases through a REST API and incorporate APIs and documentation for
query generation. [Gamage et al. 2024] employs a multi-format data pipeline. Unstructured text
data is used to build reasoning upon a set of endpoints API of documentation through swagger
[SmartBear 2024]. Similar research focuses on fine-tuning or domain-specific initial knowledge
sources by leaking a priori the domain of the tested LLM subject [Tianjun Zhang et al. 2024]. We
implement a continuous RAG approach which iteratively refines the information by including it in
the searchable data and later responses.

Starting on the backend API and JSON documentation, this dictates the query syntax and provides
a structured knowledge source. Each endpoint documentation includes its functions and required

3Representational State Transfer Application Programming Interface
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parameters. This documentation serves as a foundational resource for knowledge sources in the
retrieval enabling the generation of specialized responses for each query. In Figure 1, the initial
source of information consists of a set of proceeded geographical data optimized for shortest
path and route calculations using GeoPandas for GIS parsing and NetworkX for shortest path
determination and neighboring location. This data is stored in PostgreSQL and endpoints are
created in Django. Documentation is generated through Swagger and then parsed into nodes.
Node information and attributes are stored using the pgvector add-on. The approach utilizes a
conversational pipeline (interactive) to determine the correct endpoint, request all parameters,
perform the search based on prior input, and retrieve cURL results. Historical chats enhance the
information iteratively until the final retrieval is completed. A Python-based driver or executor
runs the curl commands and interfaces with LLM. This output is then inserted the Continuous RAG
as in Algorithm 1 that continuously updates the vectorized database for the subsequent queries
generating specialized responses. The application offers two types of endpoints: unique endpoints,
which list all available options, and raw data endpoints, which provide unfiltered, datasets. Five
endpoints LCA (Life Cycle Analysis), RTS (Neighboring Cities), RTG (Routes, GIS paths, and
distances), CRD (Points of Interest ), and DMD (Freight Demand Requirements).

2.1 Storage & Retrieval:
The all-MiniLM-L6-v2 model uses 6 layers and small hidden sizes. Carries a self-attention mecha-
nism in computing a weighted sum of representations of all words in a sentence. Input tokens are
converted into dense vectors through multiple layers of self-attention and feed-forward networks.
Each layer applies a linear transformation and non-linear activation functions. Contextualized
embeddings for each token generate a single embedding for the entire sentence. Here, e𝑖 represents
the embedding of the 𝑖-th token, and 𝑁 is the total number of tokens in the sentence. The model
includes customized metadata that consists of the type of source, node identifier, length, tags,
positional order, and relationship. The semantic similarity between text elements is determined by
measuring distances or similarities between their vector representations. Information is indexed
based on their embeddings. When a query is made, its embedding is compared to the embeddings
of documents in the index to find the most similar documents. This allows for efficient and scalable
retrieval based on semantic similarity. We employ pgvector [Kane Andrew 2024] and it is set to
the nearest neighbor search algorithm providing perfect recall. Let E ∈R𝑑 represent the given
query embedding. Let ei ∈R𝑑 represent the stored embedding for the i-th record in the table. The
cosine distance D(E, ei) between E and ei is defined as: 𝐷 (E, ei) = 1 − E·ei

∥E∥ ∥ei ∥ where E · ei is the dot
product between the query embedding E and the stored embedding ei, and ∥E∥ and ∥ei∥ are the
magnitudes of the embedding. The query retrieves the records 𝑟𝑖 (with attributes such as id, 𝑛𝑜𝑑𝑒𝑖𝑑 ,
text, metadata, and the embedding) from the database table, calculating the cosine distance D(E, ei)
for each record. The records are then sorted by their cosine distance D(E, ei) in ascending order,
with the top limit records being selected. If metadata_filters are provided, an additional filter
condition is applied to the query to restrict the results based on the metadata. The query retrieves
up to limit records 𝑟𝑖 such that the cosine distance D(E, ei) is minimized, and the records satisfy
any given metadata_filters.

2.2 Continuous RAG (CRAG) Architecture
The RAG procedure separates stored utilizing an optimized vector search function, after which
the generative and attention-based mechanisms of the LLM permit the creation of specific query
sentences that respond to user needs. Process orchestration is required between the LLM, backend,
and user, a wrapper component is necessary. This entity receives user inquiries, sends prompts
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to collect specified parameters, and permits specifying the required model. The generated output
is stored in the relational database and subsequently linked with metadata to enable the models
to understand the underlying logic for each API as observed in Algorithm 1. This addresses the
current limitations of the context_window, which is notably constrained even in large models like
LLaMA-3.1 405b [Dubey et al. 2024]. We offer a near-unlimited context window by first refining
the context with a feedback mechanism and then utilizing it in the model’s operations.

3 COMPUTATION & EXPERIMENTATION
We evaluate the performance of leading models and compare them to those results obtained by
manual execution. This provides a comprehensive assessment of their efficacy in retrieving and
answering geographical-related information. We evaluate a set of local large language models.
Specifically, we use LLaMA 3.1 8b and Gemma 2 9B IT. We utilize a set of pre-calculated information
to determine whether each model properly queried and outputted the expected values after the
interactive approach. Testing is performed by the use of Selenium web driver [SeleniumHQ 2024]
following automated testing.

Model performance is aimed to be tracked using quantitative metrics such as BERTscore [Tianyi
Zhang et al. 2019] and METEOR [Banerjee and Lavie 2005], alongside error analysis. By integrating
expert and user feedback and leveraging automated systems for continuous learning the CRAG
training process and feedback utilized the Gemma model, known for its structured output.

Figure 1 details the use of single-parameter queries, as opposed to two-parameter queries, which
appears to complicate the instructional query and retrieval process, making it more challenging to
follow. For 1 parameter scenario, the hub or city name is considered. Notably, the application of the
CRAG method demonstrates a significant improvement in the Gemma-based model compared to
the Llama model in CRD. Nevertheless, a llama-based model presented a slight decrement in regards
to the BERTscore metric during LCA testing. The outcome in the METEOR model exhibits better
performance for both CRD and LCA independently in the majority of the models. Experiments
utilized a temperature setting of 0.2, a maximum of 256 new tokens, a context window of 1024,
and embeddings with a dimensionality of 384. Whereas longer models utilize a maximum of 1024
tokens for generating new content, they are also configured with a context window of 3084 tokens.
CRAG training used 20 samples and testing was performed on 30 per endpoint.

4 CONCLUSIONS & FUTURE DIRECTIONS

Fig. 2. Expected output including cURL instruction.

The proposed approach,
when combinedwith CRAG
techniques, aims at ensur-
ing accurate responses. Our
workflow begins with a
base of information, which
is then enhanced by lever-
aging the output of an LLM,
vectorized, and stored. This
integration of LLM and
RAG creates a powerful
platform capable of execut-
ing API requests across various instances. Future directions will focus on utilizing more comprehen-
sive node metadata and provide an extensive comparison considering a higher complexity request
to evaluate the impact on the methodology. These while pairing a direct shell access for query
validation.
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Algorithm 1 Conversational Pipeline: Standardized Input-Output Interactive W/O CRAG Training
1: Input: User query 𝑄 (e.g., Calculate the distance between two cities.)
2: Step 1: User Request; 𝑄 = 𝑓 (Input); 𝑄 ∈ D where D represents the domain of possible user queries

from documentation.
3: Step 2: Query Determination; Determine API endpoint 𝐴𝑄 for query 𝑄 based on rule set R; 𝐴𝑄 =

𝑔(𝑄,R); (e.g., if 𝑄 relates to geographic data, then 𝐴𝑄 ∈ <api/rtg/>)
4: Step 3: Machine Action (Search for API); Extract parameters from user input 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}

from 𝑄 for 𝐴𝑄

5: if 𝑃 = ∅ then
Ask user for input parameters 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}

6: end if
Execute API call via curl command; 𝑅raw = curl(𝐴𝑄 , 𝑃)

7: Step 4: Backend Processing; Insert queried data 𝑅raw into the RAG system; 𝑅refined = ℎ(𝑅raw,M),
whereM is the RAG model.

8: Step 5: Machine Action (Response Generation); Return the refined response 𝑅 based on 𝑅refined:
𝑅 = GenerateResponse(𝑅refined)

9: Step 6: Response Validation
10: while 𝑅 does not meet expected criteria (e.g., incomplete, incorrect) do

Go back to Step 3 and repeat the process;
11: end while
12: Output: Final response 𝑅 (e.g., The distance from city A to city B is X miles.)

Table 1. Performance Metrics for CRD and LCA
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