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Abstract
This paper introduces a novel approach to solving a practical vari-

ant of the Vehicle Routing Problem (VRP), the multi-trip VRP with

heterogeneous fleet and time windows (MTVRPHFTW). The ap-

proach integrates an improved Ant Colony Optimization (IACO)

metaheuristic, a modified density-based spatial clustering of appli-

cation with noise (DBSCAN-Plus) clustering, and a Micro-Cluster

Fusion Scheme. The proposed framework aims to optimize vehicle

routes by minimizing total travelling distance and time while ensur-

ing a fair distribution of workload among the vehicles (drivers). To

evaluate the proposed algorithm, referred to as the Ant Colony Opti-

mization (ACO) algorithm with improvement mechanisms (Cluster

Improved Ant Colony Optimization, CIACO), real-world data from

a logistics company in Canada was utilized. This empirical testing

aims to validate the algorithm’s effectiveness in practical applica-

tions. The experimental results of CIACO demonstrate that the

proposed algorithm outperforms existing methods in terms of re-

ducing traveling distance, minimizing traveling time, optimizing

the use of smaller vehicles to reduce CO2 emissions, achieving

balanced workloads among drivers, and improving overall route

optimization.

CCS Concepts
• Mathematics of computing→ Combinatorial optimization;
• Applied computing→ Transportation;
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1 Introduction
The Vehicle Routing Problem (VRP) is a significant optimization

challenge in logistics and transportation, focused on determining

the most efficient routes for a fleet of vehicles to deliver goods to

customers. While traditional VRP models primarily aim to min-

imize transportation costs, real-world applications present addi-

tional complexities, such as balancing workloads among drivers,

managing heterogeneous fleets, and adhering to strict time win-

dows. Addressing these complexities requires advanced approaches

that ensure both operational efficiency and fairness.

VRP-solving approaches are generally categorized into exact

algorithms and heuristics, with heuristics further divided into con-

structive and improvement methods [8]. Given that the Multi-Trip

VRP with Real Heterogeneous Fleet and Time Windows (MTVR-

PHFTW) is an NP-Hard problem, exact algorithms are computa-

tionally infeasible for large-scale, real-world applications [3]. Im-

provement heuristics can be effective in practice, but they typically

require an initial feasible solution, which is often challenging to

obtain for most VRP variants [3]. These challenges require the de-

velopment of advanced algorithms capable of efficiently managing

the complexity and scale of real-world VRPs.

The main difference between the traditional VRP and the MTVR-

PHFTW lies in the latter’s ability to handle a heterogeneous fleet

with varying capacities. Unlike many studies that focus solely on

vehicle weight constraints, our approach also considers the number

of skids as a crucial capacity factor, offering a more comprehensive

solution. Additionally, the MTVRPHFTW allows each vehicle to

perform multiple trips within a specified planning horizon while

ensuring that customer-specific time windows are respected [8].

To address these challenges, we propose CIACO, designed specif-

ically for solving the MTVRPHFTW. CIACO integrates cluster-

ing techniques with an enhanced Ant Colony Optimization (ACO)
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method. It begins by employing a modified DBSCAN algorithm

(DBSCAN-Plus) to group customers into micro-clusters based on

spatial proximity, demand and time windows while considering

vehicle capacity constraints. These micro-clusters are then fused to

ensure balanced workloads across all vehicles. The enhanced ACO

algorithm optimizes vehicle routes by incorporating a return mech-

anism to handle multi-trip scenarios and by considering vehicle

types to maximize the use of smaller vehicles.

The main objectives are to minimize the total traveling distance

and time, reduce load imbalance to ensure fair workload distribu-

tion among vehicles andmaximize the use of smaller vehicles. Using

real-world data from a Canadian logistics company, the proposed

framework demonstrates significant improvements in transporta-

tion cost reduction and workload balance compared to traditional

methods. The approach enhances the use of smaller vehicles, con-

tributing to overall efficiency and sustainability.

This paper is structured as follows: Section 2 reviews related

work in VRP optimization, focusing on workload balance and het-

erogeneous fleets. Section 3 presents the problem definitions and

assumptions for MTVRPHFTW. Section 4 details the proposed

methodology and algorithms, introducing novel integration of clus-

tering and optimization techniques that form the core of our ap-

proach. Section 5 discusses the experimental setup and results, high-

lighting the improvements achieved. Finally, Section 6 concludes

the paper and outlines potential directions for future research.

2 Related Works
Despite extensive research on traditional VRPs, studies specifically

addressingMTVRPHFTW are limited, particularly in terms of inves-

tigating this problem under realistic conditions and benchmarking

performance using real industrial data. This gap highlights the need

for more research focused on practical solutions to MTVRPHFTW.

In the Multi-Trip VRP (MTVRP), drivers made multiple trips

per day, influenced by factors like perishable goods or maximum

driving hour regulations [2, 16]. This variant was relevant in city

logistics with small vehicles and multiple trips, and it included a

time horizon to record the duration of each trip [2, 16].

The Multi-Trip Vehicle Routing Problem with Time Windows

and Heterogeneous Fleet (MTVRPTWHF) introduced a complex

variation of the classic VRP by incorporating additional constraints

related to time windows for each customer, the capacity of the ve-

hicle, and the number of skids [3, 4, 8, 14, 15]. This problem variant

considered not only the scheduling of deliveries within specific

time windows for each customer but also the operational aspect

of utilizing a heterogeneous fleet capable of executing multiple

trips [11]. A critical constraint was the overall time horizon for

completing all routes, which could not be exceeded, reflecting the

real-world logistical challenge of meeting customer demands within

a finite operational period. The solution approach combined Local

Search and Simulated Annealing techniques, aiming to optimize

route planning and fleet utilization efficiently [4]. This methodology

was tested against widely recognized VRP benchmarks to validate

its effectiveness and performance in addressing the intricacies of

MTVRPTWHF [4, 5].

ACO algorithms, initially proposed by Dorigo et al. (1996), were

widely applied to various combinatorial optimization problems,

including VRPs [6]. The algorithm’s ability to find optimal paths

through probabilistic decision-making and pheromone trails made

it particularly suitable for dynamic and complex problems like

MTVRP [1]. The specific application of ACO in heterogeneous fleet

scenarios became a topic of increasing interest. When ACO was

tailored to account for different vehicle types and capacities, it led to

more cost-effective and practical routing solutions [1, 6, 8, 17]. This

research highlighted the adaptability of ACO to diverse logistical

requirements.

Beginning with the foundational work by Blum and Roli [1],

which offered a broad overview of metaheuristics, this section set

the groundwork for understanding the significant role of ACO in

combinatorial optimization. Their analysis highlighted the critical

balance between intensification and diversification strategies, es-

sential for effective solution space exploration and exploitation in

complex optimization problems, including those in vehicle routing.

Phuc and Thao [12] applied ACO to the complex Multi Pickup

and Multiple Delivery Vehicle Routing Problem with Time Window

and Heterogeneous Fleets (MPMDVRPTWHF), illustrating ACO’s

ability to adapt to logistical constraints such as varying vehicle

capacities and strict delivery schedules, aiming to minimize total

travel costs. This study demonstrated ACO’s potential in optimizing

routes to accommodate a wide range of operational constraints and

fleet diversities, indicating its suitability for complex logistical chal-

lenges. Furthering the application of ACO, Yu et al. [19] introduced

an improved variant for the VRP, incorporating strategies like the

“ant-weight strategy” and mutation operations to boost the algo-

rithm’s performance. Their approach confirmed ACO’s capacity to

produce solutions that were competitive with traditional methods,

highlighting its adaptability and efficiency in routing optimization

across different problem settings.

Mazzeo and Loiseau [13] concentrated on the Capacitated Ve-

hicle Routing Problem (CVRP), exploring various aspects of the

ACO algorithm, such as route building, transition rules, pheromone

updates, and the implementation of improvement heuristics. Their

findings pointed to ACO’s competitive advantage over other meta-

heuristics, especially in handling problems up to 50 nodes and

showing promising applicability for larger issues.

Gupta and Saini [7] enhanced the traditional ACO framework

for the Vehicle Routing Problem with Time Windows (VRPTW)

by introducing a new pheromone reset and update function along-

side a 2-opt method for path improvement. Their version of the

enhanced ACO demonstrated substantial improvements in routing

optimization, emphasizing the algorithm’s effectiveness in manag-

ing time-constrained routing challenges.

Wu et al. [18] proposed a Hybrid Ant Colony Optimization

(HACO) for the VRPTW, incorporating a unique blend of strategies,

including a novel pheromone update method, adaptive parame-

ters, and mutation operations. This approach aimed to overcome

the limitations of traditional ACO by enhancing solution diver-

sity and avoiding premature convergence to local optima. Based

on Solomon’s instances, their experimental results demonstrated

HACO’s effectiveness in optimizing routes within specified time

windows, highlighting its practical implications for complex routing

problems. This study further solidified the adaptability and poten-

tial of ACO-based methods in addressing the intricacies of VRPTW,
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contributing to the ongoing development of efficient logistical and

transportation solutions.

These studies demonstrated the versatility and efficiency of ACO

in solving complex vehicle routing problems, particularly in scenar-

ios that involved different types of fleets and multiple trips. ACO

continuously evolved through improvements and adaptations and

remained a powerful tool in logistics and transportation, signifi-

cantly reducing the number of vehicles required and the overall

distance travelled, thereby improving operational efficiency and

sustainability in the logistics sector. Unfortunately, these studies

mostly focused on reducing total distance or total traveling time but

did not address the important aspect of improving load imbalance

for drivers or vehicles, which was crucial for ensuring fair workload

distribution and operational equity.

3 Problem Definition and Assumptions
In this section, we define the problem of solving an MTVRPHFTW

and outline the core assumptions and notations used in the formu-

lation. This problem is a practical extension of the VRP designed to

accommodate multiple trips, vehicles of varying sizes with differ-

ent capacities, strict service time windows, and customers’ specific

preferences.

The MTVRPHFTW is modeled as a complete graph 𝐺 = (𝑁, 𝐸),
where:

• 𝑁 = {𝑛0, 𝑛1, 𝑛2, . . . , 𝑛𝑛} represent the set of geographically
distributed nodes, with 𝑛0 denoting the depot and the re-

maining nodes representing customer locations.

• 𝐸 = {(𝑖, 𝑗) |𝑖, 𝑗 ∈ 𝑁 } is the set of edges defining the possible
routes connecting these nodes.

Each customer 𝑖 has a demand 𝑑𝑖 consisting of both weight (mass

of goods to be delivered) and the number of skids (pallets used for

transport). Customers must be serviced within specific time win-

dows [𝑡 start
𝑖

, 𝑡end
𝑖
], where 𝑡 start

𝑖
and 𝑡end

𝑖
represent the earliest and

latest allowable service times for customer 𝑖 , respectively. The ser-

vice time at each node 𝑛𝑖 , denoted by 𝑠𝑖 , refers to the time required

to complete the service, with 𝑠0 specifically indicating the loading

time at the depot. The travel time between nodes 𝑖 and 𝑗 is indicated

by 𝑡𝑖 𝑗 . We define the set 𝐻 𝑓 = {0, 1, 2, . . . , |𝐻 𝑓 |} to represent the

heterogeneous fleet types based on their capacities. In our industrial

case, the fleet consists of three different vehicle types, denoted by

𝑓 , where the largest truck is labelled as 1, the mid-sized truck is

labelled as 2, and the smallest truck is labelled as 3. The capacity of

a vehicle 𝑣 ∈ 𝐻 , in terms of weight and number of skids, is denoted

by 𝐶𝑣 . Additionally, each customer 𝑖 may have a preference for a

specific vehicle type, indicated by 𝑝𝑖 . If customer 𝑖 has no prefer-

ence, 𝑝𝑖 is set to 0. The maximum allowable working hours per day

for each vehicle is represented by 𝑇max.

4 Methodology
4.1 Overview
In this section, we propose the use of the CIACO algorithm for prac-

tical application in the industry for MTVRPHFTW. The approach

integrates clustering techniques and enhanced ACO to achieve bal-

anced workloads, minimize travel costs, optimize the use of smaller

vehicles to reduce CO2 emissions and adhere to time window con-

straints. The framework is structured into four phases: customer

clustering (DBSCAN-Plus), micro-cluster fusion, and route opti-

mization, accommodating practical logistics constraints such as

multiple trips per vehicle, varying vehicle sizes and capacities, and

customer-specific service time windows.

Figure 1 illustrates the structured phases of the CIACO frame-

work, which systematically optimizes vehicle routing by clustering

customers, merging micro-clusters, and refining routes to meet

practical logistics constraints. Each phase will be discussed in more

detail in Sections 4.2, 4.3, 4.4, and 4.5.

Figure 1: CIACO optimization framework

4.2 Clustering and Micro-Cluster Fusion
4.2.1 DBSCAN-Plus Clustering.

To reduce computational complexity and ensure balanced work-

load distribution in the context of MTVRPHFTW, we developed the

DBSCAN-Plus algorithm. This approach builds upon the traditional

DBSCAN clustering method, previously used in various vehicle

routing optimization frameworks, such as the work by Li, Fang, and

Tang [10]. However, our adaptation—DBSCAN-Plus—incorporates

several key modifications to better handle the specific challenges

posed by MTVRPHFTW. The main procedure of DBSCAN-Plus is

outlined in Algorithm 1.

The DBSCAN-Plus algorithm begins by normalizing customer

demands relative to vehicle capacities, as shown in Line 3 of Algo-

rithm 1. This normalization is expressed as 𝐷normalized

𝑖
=

𝐷𝑖

𝐶
for
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each customer 𝑖 , ensuring that the clustering process accurately

reflects the varying demands of different customers, similar to the

technique used by Li et al. [10]. Following this, DBSCAN is applied

to these normalized demands (Lines 4-5 in Algorithm 1), producing

initial clusters. The total demand for each cluster 𝑘 is then calcu-

lated as Total Demand𝑘 =
∑
𝑖∈Cluster𝑘 𝐷𝑖 (Lines 11-12 in Algorithm

1).

While the foundational clustering process is similar to that de-

scribed in [10], our DBSCAN-Plus algorithm includes specific modi-

fications to address the more complex scenario of multi-trip vehicle

routing with a heterogeneous fleet and time windows. The orig-

inal work in [10] dealt with a single-trip problem, whereas our

approach must accommodate multiple trips per vehicle, varying

vehicle capacities (weight and skid) and strict time windows for

deliveries. These additional constraints add significant complexity

to the clustering and optimization processes.

First, Enhanced Demand Normalization (Lines 3-5 in Algorithm

1) adjusts for the presence of multiple vehicle types with differing

capacities for both weight and skids. This adjustment allows the

clustering process to more accurately reflect real-world constraints.

Second, during the Cluster Fusion stage (Lines 13-21 in Algorithm

1), the algorithm checks if any cluster’s total demand exceeds the

vehicle’s capacity 𝐶 . If it does, the cluster is split into smaller sub-

clusters to ensure that each sub-cluster’s demand remains within

manageable limits.

This sub-clustering approach is specifically tailored to address

the MTVRPHFTW scenario, where multiple vehicle types and con-

straints must be considered simultaneously. Finally, the Integration

with ACO Algorithm 2 uses these Micro-Clusters as input for an

ACO algorithm. The structured initial conditions provided by the

clustering phase help in achieving faster convergence and better

optimization outcomes, enabling our approach to handle the multi-

trip, heterogeneous fleet scenario more effectively.

In summary, the DBSCAN-Plus algorithm effectively breaks the

problem into smaller, more manageable clusters, leading to faster

convergence and consistent initial conditions for the ACO algo-

rithm. By improving the utilization of smaller vehicles, this ap-

proach reduces the need for larger vehicles and lowers CO2 emis-

sions, as vehicle weight is a critical factor in emission calculations

[9]. Compared to [10] and traditional DBSCAN, which may not

fully account for demand (weight and skid) and time windows or

efficiently merge clusters in multi-trip scenarios, Cluster-ACO of-

fers a more robust and adaptable solution. It is specifically designed

to address the complexities of the multi-trip, heterogeneous fleet

scenario in ways that traditional approaches do not, making it a

more comprehensive and effective method.

4.2.2 Micro-Cluster Fusion.
Following the initial clustering phase, the Micro-Cluster Fusion

process is applied to optimize the cluster configuration further. This

step involves merging smaller Micro-Clusters into larger ones while

ensuring that the total demand within each fused cluster does not

exceed the vehicle’s capacity. The fusion process not only enhances

the efficiency of the delivery routes by reducing the number of trips

required but also helps in minimizing the overall travel distance.

By carefully managing the fusion of Micro-Clusters, the algorithm

achieves a more cohesive and balanced set of customer clusters,

Algorithm 1 DBSCAN-Plus Clustering

1: Input:
Set of customer locations (coordinates x and y) X
Demands D
Vehicle capacity 𝐶

DBSCAN parameters: 𝜖 (eps) and min_samples
2: Output: Clusters satisfying capacity constraints fused_clusters

3: Normalize demands by vehicle capacity:

D
normalized

=
D
𝐶

4: Perform DBSCAN clustering on X, weighted by D
normalized

:

5: labels← DBSCAN(X, 𝜖,min_samples, sample_weight = D
normalized

)
6: Extract initial clusters:

initial_clusters← {label : indices of points with label in labels}
7: Adjust cluster indices for correct customer referencing:

8: adjusted_clusters← Adjust indices of initial_clusters

9: by adding 1

10: Initialize an empty list for valid clusters:

fused_clusters← []
11: for each cluster in adjusted_clusters do
12: Compute the total demand for the current cluster:

total_demand← ∑
𝑖∈cluster D[𝑖]

13: if total_demand exceeds vehicle capacity 𝐶 then
14: Sort customers in the cluster by demand in descending

order: sorted_cluster← Sort(cluster)

15: Initialize a new sub-cluster: sub_cluster_demand ←
0, sub_cluster← []

16: for each customer 𝑖 in sorted_cluster do
17: if Adding customer 𝑖 does not exceed capacity then
18: Add customer 𝑖 to the sub-cluster:

sub_cluster← sub_cluster ∪ {𝑖}
19: Update sub-cluster demand:

sub_cluster_demand← sub_cluster_demand + D[𝑖]
20: else
21: Add the completed sub-cluster to fused_clusters:

fused_clusters← fused_clusters ∪ sub_cluster
22: Start a new sub-cluster with customer 𝑖:

sub_cluster← {𝑖}, sub_cluster_demand← D[𝑖]
23: end if
24: end for
25: if sub_cluster is not empty then
26: Add the remaining sub-cluster to fused_clusters:

fused_clusters← fused_clusters ∪ sub_cluster
27: end if
28: else
29: Add the entire cluster to fused_clusters:

fused_clusters← fused_clusters ∪ cluster
30: end if
31: end for
32: Return fused_clusters
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Algorithm 2Microcluster-Fusion

1: Input:
List of fused clusters fused_clusters
Demands of each cluster demands
Maximum vehicle capacity C_max

2: Output: Final list of fused microclusters final_fused_clusters

3: Initialize an empty list for fused microclusters: fi-
nal_fused_clusters← []

4: Sort fused_clusters in descending order based on their total

demand

5: while there are fused clusters left to process do
6: Select the largest fused cluster current_cluster from

fused_clusters
7: Remove current_cluster from fused_clusters
8: Initialize a new cluster new_cluster with current_cluster
9: Set current_demand as the total demand of current_cluster
10: for each candidate_cluster in fused_clusters do
11: Calculate candidate_demand as the total demand of can-

didate_cluster
12: if current_demand + candidate_demand ≤ C_max then
13: Merge candidate_cluster into new_cluster
14: Update current_demand ← current_demand + can-

didate_demand
15: Remove candidate_cluster from fused_clusters
16: end if
17: end for
18: Add new_cluster to final_fused_clusters
19: end while
20: Return final_fused_clusters

ultimately contributing to a more efficient and cost-effective de-

livery operation. The main procedure of Micro-Cluster is given in

Algorithm 2.

In the Micro-Cluster Fusion process, clusters are merged based

on their total demand. For each pair of clusters considered for merg-

ing, the combined demand is calculated as Combined Demand =

Total_Demand
current

+Total_Demand
candidate

(Lines 10-11 in Algo-

rithm 2). This merger occurs only if the combined demand does not

exceed the vehicle’s capacity (Combined Demand ≤ 𝐶max) (Line

11 in Algorithm 2). After merging, the demand for the new clus-

ter is updated to Total_Demand
new cluster

= Total_Demand
current

+
Total_Demand

candidate
(Lines 12-16 in Algorithm 2), ensuring that

the resulting clusters are both efficient and within capacity limits.

4.3 Route Optimization
4.3.1 IACO Environment Setup and Update.

The Environment Setup and Update algorithm is a critical com-

ponent of the Ant Colony Optimization (ACO) process, ensuring

that the ants’ environment is properly initialized and maintained

throughout the optimization. This algorithm aims to set up the

initial pheromone levels and heuristic information, which guide the

ants in constructing their solutions. Additionally, the algorithm in-

cludes mechanisms for updating the pheromone trails based on the

quality of solutions found and recalculating transition probabilities

Algorithm 3 Environment Setup and Update

1: Initialization:
2: Initialize pheromone matrix 𝜏 with ones

3: Set diagonal of 𝜏 to zero

4: Compute heuristic matrix 𝜂 as inverse of distance matrix

5: Normalize 𝜂 to [0, 1] scale using min-max normalization

6: Initialize time window constraints and load balancing factors

7: Compute time window restriction matrix

8: End Initialization
9: function UpdatePheromone(C)
10: Decay existing pheromones in 𝜏 using evaporation rate

11: for each solution in C do
12: Update pheromones on paths taken by solution based

on fitness

13: end for
14: end function
15: function UpdateProbability

16: for each customer 𝑖 do
17: Compute normalization factor 𝑍𝑖 as:

𝑍𝑖 =

𝑛∑︁
𝑗=1

𝜏 [𝑖, 𝑗] · 𝜂 [𝑖, 𝑗]

18: for each customer 𝑗 do
19: Calculate probability of moving from 𝑖 to 𝑗 using:

𝑃 [𝑖, 𝑗] ← 𝜏 [𝑖, 𝑗] · 𝜂 [𝑖, 𝑗]
𝑍𝑖

20: end for
21: end for
22: end function

to reflect changes in the environment. This dynamic adjustment

helps in balancing the exploration and exploitation aspects of the

search process [6]. The detailed steps of the Environment Setup

and Update are presented in Algorithm 3.

The Algorithm 3 begins by setting up the pheromone matrix 𝜏

with initial values of 1, where the diagonal elements are set to 0 to

prevent self-loops (Lines 2-3 in Algorithm 3). The heuristic matrix

is computed as the inverse of the distance matrix and normalized to

a [0,1] range (Lines 4-5 in Algorithm 3). Additionally, time window

constraints and load-balancing factors are initialized, along with

the time window restriction matrix (Lines 6-7 in Algorithm 3).

The Update-Pheromone function (Lines 9-13 in Algorithm 3)

updates the pheromone values, applying pheromone evaporation

and reinforcing paths taken by high-quality solutions. The Update-
Probability function (Lines 15-22 in Algorithm 3) recomputes the

probabilities of transitioning between customers by first computing

the normalization factor 𝑍𝑖 as the sum of pheromone and heuristic

products (Lines 17-18 in Algorithm 3). These probabilities guide the

ants in constructing their routes based on the updated pheromone

and heuristic information.

4.3.2 IACO for MTVRPHFTW.
The IACO for MTVRPHFTW with Time Window Penalty algo-

rithm is designed to iteratively optimize solutions for the MTVR-

PHFTW. This algorithm applies the principles of ACO to find the
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Algorithm 4 IACO for MTVRPHFTW with Time Window Penalty

1: Data:MTVRPHFTW instance

2: Result: Best solution
3: Initialize env // (ACO environment) Initialize pheromone

matrix, heuristic matrix, and other parameters

4: colony← [] // Collection of solutions and their fitness

5: for each 𝛼 ∈ A do
6: sol← InitializeSol()

7: colony.append(sol)
8: end for
9: best← colony[argmin(colony.fitness)] // Track the best solution
10: for each iteration do
11: for each 𝛼 ∈ A do
12: sol← InitializeSol() // Reinitialize solution for each

ant

13: sol.route← AntMovement(env) // Construct solution
routes

14: sol.fitness← EvaluateSol(sol.route)
15: Calculate time window penalty for sol.route
16: sol.fitness← sol.fitness + time_window_penalty // Apply

the penalty

17: Sort colony by fitness // Sort colony to maintain the

best solutions

18: colony[worst]← sol // Replace the worst solution if

the new solution is better

19: end for
20: Update env.pheromone // Update pheromone levels based

on current solutions

21: Update env.probability // Update transition probabilities

for the next iteration

22: if min(colony.fitness) < best.fitness then
23: best ← colony[argmin(colony.fitness)] // Update the

best solution found

24: end if
25: end for
26: return best // Return the best solution found

most efficient routing solutions that minimize travel costs while

meeting operational constraints, such as vehicle capacities and

customer time windows. To handle violations of time constraints,

a time window penalty is applied to the fitness of each solution,

guiding the search toward feasible and optimal routes. The main

steps of this process are outlined in Algorithm 4.

The ACO algorithm simulates the behavior of an ant colony in

searching for food sources by depositing pheromones along paths,

which in turn influences the decisions of other ants [6]. In this

context, the set of ants is denoted by 𝐴, where each ant 𝛼 ∈ 𝐴

constructs a solution by iteratively selecting the next node to visit,

forming a sequence of nodes 𝑖 ∈ 𝑁 that begins and ends at the

depot.

After all ants have constructed their solutions, the pheromone

levels on the paths are updated through both evaporation and

deposition processes. As shown in equation (1), the pheromone

level 𝜏𝑡 (𝑖, 𝑗) on the path from the node 𝑖 to node 𝑗 at iteration 𝑡

decreases by an evaporation rate 𝜌 (where 0 < 𝜌 < 1). It is also

increased by the amount of pheromone deposited by each ant 𝑎 ∈ 𝐴,

denoted as Δ𝜏𝑎𝑡 (𝑖, 𝑗), which is calculated as the inverse of the length
of the solution 𝐿𝑎 (𝜏𝑡 =

1

𝐿𝑎
) [6, 8].

𝜏𝑡 (𝑖, 𝑗) = (1 − 𝜌) · 𝜏𝑡−1 (𝑖, 𝑗) +
∑︁
𝑎∈𝐴

Δ𝜏𝑎𝑡 (𝑖, 𝑗) (1)

The ants determine the next node to visit based on a transition

probability that considers both the pheromone level and the proxim-

ity (or visibility) of the nodes [6, 8]. The visibility from node 𝑖 to 𝑗 is

represented as ℎ𝑏
𝑖 𝑗
, where ℎ𝑖 𝑗 denotes the visibility between nodes

𝑖 and 𝑗 , and 𝛽 is a constant reflecting the importance of visibility.

The set of feasible neighbor nodes that can be visited from node 𝑖

is denoted by 𝑁𝑖 . The probability of transitioning from node 𝑖 to

node 𝑗 at iteration 𝑡 is calculated as [8]:

𝑃𝑡 (𝑖, 𝑗) =
𝜏𝑡 (𝑖, 𝑗)𝛼ℎ𝛽𝑖 𝑗∑

𝑗∈𝑁𝑖
𝜏𝑡 (𝑖, 𝑗)𝛼ℎ𝛽𝑖 𝑗

(2)

Algorithm 4 begins by initializing the ACO environment (env)

and an empty colony to store the solutions (Lines 3-4). Each 𝛼 ∈ 𝐴
is assigned an initial solution using the ’InitializeSol’ function, and

the best solution is identified and recorded (Lines 5-8).

In the main loop (Lines 10-25), the algorithm iteratively con-

structs solutions for each ant by generating routes using the ’AntMove-

ment’ function, as detailed in Algorithm 5. The fitness of each solu-

tion is evaluated, incorporating a time window penalty to account

for any violations (Lines 15 in Algorithm 4). The colony is updated

by replacing the worst solution with a better one if a superior solu-

tion is found (Lines 16-18 in Algorithm 4). Pheromone levels are

adjusted based on the quality of the solutions, influencing deci-

sions in subsequent iterations (Lines 20-21 in Algorithm 4). If a

new best solution is discovered, it replaces the current best solution

(Lines 22-23 in Algorithm 4). Algorithm 5 is critical in this process,

as it determines the route construction for each ant. It considers

the current environment, including pheromone levels, heuristic

information, and the constraints on load and time. The algorithm

ensures that the ants construct feasible routes that respect the vehi-

cle capacity and time window constraint while also allowing for the

return to the depot when necessary. The process continues until the

termination criteria are met, at which point the algorithm returns

the best solution found (Line 26 in Algorithm 4)

4.4 Constraints Handling
The MTVRPHFTW involves complex operational constraints that

must be carefully managed to produce feasible and optimized so-

lutions. This section outlines how these constraints are handled

within the proposed framework, mainly focusing on the AntMove-

ment function (Algorithm 5) and the initial clustering phases with

DBSCAN-Plus and Micro Cluster-Fusion.

4.4.1 Multi-Trip Constraint.
The multi-trip nature of the MTVRPHFTW problem requires ef-

ficient vehicle utilization, where each vehicle may perform multiple

trips. The ‘AntMovement’ function in Algorithm 5 manages this by

tracking the current vehicle index (curr_vidx), cumulating load (L)
and the cumulative time (𝑇

total
) of the vehicle as it serves customers.

After each trip, the algorithm evaluates whether to continue serving

more customers or return to the depot to start a new trip based on
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Algorithm 5 AntMovement

1: Input:
Environment variables: pheromonematrix 𝜏 , heuristic matrix

𝜂, probability matrix P
Set of customers C, demands D, capacity Cmax

Time matrix T, service times S
Maximum time window max_time

2: Output: Constructed route for each ant

3: Initialize route R← [0] // Start at depot (node 0)
4: Initialize cumulative load L← 0
5: Initialize cumulative time Ttotal ← 0

6: Initialize vehicle index curr_vidx← 0

7: Initialize vehicle type curr_vtype← 0

8: Initialize set of unvisited customers U← C
9: while U ≠ ∅ do
10: Calculate probabilities P(𝑖, 𝑗) for each unvisited customer

𝑗 ∈ U
11: Select next customer 𝑗 based on P(𝑖, 𝑗)
12: if L+D𝑗 ≤ Cmax and Ttotal +𝑇 (𝑖, 𝑗) +𝑆 𝑗 ≤ max_time then
13: Add customer 𝑗 to route R← R ∪ { 𝑗}
14: Update cumulative load L← L + D𝑗

15: Update cumulative time Ttotal ← Ttotal +𝑇 (𝑖, 𝑗) + 𝑆 𝑗
16: Remove 𝑗 from U
17: else
18: Return to depot and start a new trip

19: R← R ∪ {0}
20: Reinitialize L and Ttotal
21: Update vehicle index curr_vidx← curr_vidx + 1
22: Set curr_vtype← 0 //Reset vehicle type

23: end if
24: end while
25: Return route R, vehicle indices curr_vidx, vehicle types

curr_vtype

these variables (Lines 18-22 in Algorithm 5). This approach ensures

that vehicles are optimally deployed across multiple trips to meet

customer demands effectively.

4.4.2 Time Window Constraint.
Managing time windows is critical to ensuring deliveries occur

within the specified time frames. The algorithm handles this by

continuously updating the cumulative time (𝑇
total

) for each trip

and checking if the addition of a customer would violate their

time window. If adding the customer would result in exceeding the

maximum time allowed (max_time), the vehicle returns to the depot

to start a new trip (Lines 12-18 in Algorithm 5). This mechanism

ensures that all deliveries respect the time constraints.

4.4.3 Heterogeneous Fleet and Capacity Constraints.
The heterogeneous fleet constraint involves varying vehicle ca-

pacities and capabilities, which is addressed by selecting the most

appropriate vehicle based on the cumulative load (𝐿). As the route

is constructed, the algorithm continuously checks whether the cu-

mulative load (𝐿) remains within the vehicle’s capacity (𝐶max). If

a customer’s demand exceeds the vehicle’s capacity, the vehicle

returns to the depot to begin a new trip with an updated load

(𝐿
updated

) and time (𝑇
total

) (Lines 14-18 in Algorithm 5).

The algorithm also uses the variable curr_vtype to ensure that

only suitable customers are included in the route. If a customer does

not specify a fleet type (indicated by a zero label), the algorithm

defaults to the largest fleet type to prevent capacity violations (Lines

18-19 in Algorithm 5).

This approach ensures that each vehicle is optimally utilized,

matching the vehicle’s capacity with the demands of the assigned

route while preventing overloads. By handling the heterogeneous

fleet and capacity constraints in a unified process, the algorithm

maintains feasible routes that respect each vehicle’s operational

limits.

4.4.4 Improvement Mechanisms.
Utilization of Smaller Vehicle Sizes
This strategy optimizes fleet utilization by assigning smaller ve-

hicles to routes where feasible, potentially reducing CO2 emissions.

During the DBSCAN-Plus clustering phase, customer demands are

normalized relative to vehicle capacities, enabling the identification

of clusters suitable for smaller vehicles (Lines 3-5 in Algorithm

1). The Micro-Cluster Fusion step further refines these clusters by

merging smaller clusters while ensuring the total demand remains

within the capacity limits of the smallest feasible vehicle (Lines 6-13

in Algorithm 2). In the ‘AntMovement’ function (Algorithm 5), the

algorithm dynamically assigns the most appropriate vehicle based

on the cumulative load (𝐿) and customer requirements, prioritizing

smaller vehicles when possible (Lines 12-14 in Algorithm 5). To

quantify the reduction in CO2 emissions, the following equation is

used [9]:

CO2 Emissions (Kg) =
𝜃 (𝑣)
1000

× 𝑆𝐿

Where 𝑆𝐿 is the route segment length (km), 𝑣 is the average speed

of the vehicle (km/h), and 𝜃 (𝑣) is the CO2 emission factor (g/km),

computed as:

𝜃 (𝑣) = 𝑘 + 𝑎𝑣 + 𝑏𝑣2 + 𝑐𝑣3 + 𝑑 1
𝑣
+ 𝑒 1

𝑣2
+ 𝑓 1

𝑣3

The coefficients 𝑘, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 are derived based on the ve-

hicle type and weight. The algorithm, therefore, optimizes route

efficiency and aims to minimize environmental impact by select-

ing vehicles that produce lower emissions over the route segment

length.

Time Window Penalty
The algorithm continuously checks for potential time window

violations during route construction in the ‘AntMovement’ func-

tion (Algorithm 5). If adding a customer would breach their time

window, a penalty is applied to the solution’s fitness (Lines 13-16

in Algorithm 4). This discourages the selection of infeasible routes

in future iterations, guiding the algorithm toward solutions that

respect time constraints.

Load Balancing
Reducing load imbalance across vehicles is a critical improve-

ment mechanism that the algorithm addresses through multiple

stages. Initially, in the DBSCAN-Plus clustering phase, clusters are

formed with careful consideration of demand distribution relative

to vehicle capacities, ensuring that no vehicle is initially assigned an
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excessive load (Lines 3-5 in Algorithm 1). During the Microcluster-

Fusion process, these clusters are further refined to maintain a bal-

anced distribution of total demand across all vehicles, minimizing

the risk of overloading any single vehicle (Lines 5-15 in Algorithm

2).

In the ‘AntMovement’ function, load balancing is dynamically

managed by reassigning vehicles to routes based on the current

cumulative load (𝐿) and cumulative time (𝑇
total

). The algorithm

also tracks the number of trips and the cumulative working time

for each vehicle to ensure fairness among drivers. This ensures

that each vehicle carries a load as close as possible to its capacity

without exceeding it and that the workload (in terms of both load

and time) is equitably distributed among all vehicles and drivers

(Lines 14-18 in Algorithm 5). By integrating these multiple load

balancing factors, the algorithm prevents overloads and promotes

fairness across the fleet.

5 Experiments
5.1 Experimental Setup
In this study, experiments were conducted using 31 real-world

instances provided by a logistics company in Canada, each repre-

senting a typical day of operations. The company’s fleet is heteroge-

neous, composed of three types of vehicles with varying capacities

(weight and skid), labeled as 1 (largest), 2 (mid-sized), and 3 (small-

est). Additionally, some customers have specific fleet requirements,

while others may have no restrictions, denoted by 0.

The vehicles operate within a fixed time window, starting at 6:00

am and ending at the depot by 6:00 pm. The loading time at the

depot is set to 60 minutes, with 20 minutes allocated for servicing

each customer. The trucks are assumed to travel at an average speed

of 0.7 km/m, equivalent to 42 km/h.

The objective function is to minimize the total travel distance.

Additionally, it aims to ensure a fair distribution of workloads

among the drivers and vehicles, as measured by load imbalance,

and to maximize the use of smaller vehicles, which can potentially

reduce both operational costs and CO2 emissions.

Several performance metrics were used to evaluate the algo-

rithm’s practical applicability:

• Total traveling distance (km)

• Total traveling time (mins)

• Total CO2 emissions

• Number of trips per vehicle

• Number of total trips

• Number of vehicles

• Load imbalance: Measured by the standard deviation (SD) of

(1) the total load delivered (TLD), (2) total travel time (TTT),

and (3) route length (RL).

• Fleet composition (usage distribution across vehicle sizes)

The ACO algorithm was configured to achieve these objectives

with 100 ants, 300 iterations, and a pheromone evaporation rate of

0.1. Due to the ACO process’s inherent randomness, each instance

is run five times, and the average results are reported to ensure

reliability.

To validate the effectiveness of the proposed improvement mech-

anisms within the ACO framework, the experiments first compare

these enhanced solutions with baseline solutions. Next, the algo-

rithm’s performance is compared with the actual industry solutions

currently used by the company, providing a practical benchmark

for evaluation.

5.2 Experimental Results
The experimental results, presented in Tables 1, 2, and 3 provide a

comprehensive analysis of the performance of the CIACO, IACO,

and Industry-standard approaches. Improvement computation was

calculated as
New Method−Baseline

Baseline
× 100%. The main objective of the

experiments was to assess improvements in total traveling distance,

total traveling time, CO2 emissions, and load balancing metrics

across the different methods.

Table 1 provides a comparative analysis between CIACO, ACO,

IACO, and Industry-standard approaches across key performance

metrics. CIACO demonstrates notable improvements over ACO

in several areas. Specifically, CIACO achieves a reduction in total

traveling distance by approximately 4.08% relative to the ACO

baseline. This decrease is accompanied by a corresponding 4.05%

reduction in total travel time and a 4.46% decrease in CO2 emissions,

indicating that CIACO effectively optimizes route efficiency while

minimizing environmental impact.

Additionally, CIACO lowers the number of trips per vehicle

and the overall number of trips by 9.30% and 7.79%, respectively,

highlighting an efficient use of fleet resources. However, CIACO

employs a slightly higher number of vehicles than ACO, with an

increase of 2.76%. This is due to the strategy of balancing the load

more evenly across the fleet, thereby preventing any single vehicle

from being overburdened.

When comparing CIACO to IACO and Industry-standard ap-

proaches, further improvements are evident. While CIACO results

in a 1.50% increase in total traveling distance compared to IACO, it

still provides a substantial reduction of 28.75% compared to industry

standards. Regarding total travel time, CIACO is 2.49% longer than

IACO but remains 23.24% shorter than Industry standards, high-

lighting efficiency despite the slight increase compared to IACO.

Similarly, CIACO records CO2 emissions that are 1.68% higher than

IACO but demonstrate a significant 18.42% reduction compared

to industry-standard practices. The number of trips per vehicle

decreases by 6.67% compared to IACO and by 8.26% relative to

industry standards, while the total number of trips drops by 1.99%

compared to IACO and 20.19% compared to industry. Moreover,

CIACO reduces the number of vehicles by 4.34% compared to IACO

and by 34.68% compared to industry practices.

These results emphasize CIACO’s effectiveness in achieving

operational and environmental benefits while closely matching

the efficiency of IACO and significantly outperforming industry-

standard practices. Importantly, CIACO also demonstrates a notable

improvement in load balancing across routes, which is further

detailed in Table 3.

Table 2 provides insights into vehicle utilization, particularly

focusing on the distribution of vehicle types across CIACO, IACO,

and ACO. CIACO significantly outperforms in utilizing smaller

vehicles (Vehicle Type 3) with a 3.87% higher utilization compared

to IACO and an 8.63% increase relative to ACO. This result is consis-

tent with the algorithm’s design, which aims to maximize the use
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Table 1: Comparative Experiment Results with Improvements from Baseline (ACO, IACO, and Industry)

ACO
b

CIACO
a

IACO
c

Industry
d

Impv.
ab

Impv.
ac

Impv.
ad

Total travelling distance (km) 1429.76 1371.51 1351.23 1924.89 -4.08% 1.50% -28.75%

Total travelling time (mins) 1753.26 1682.15 1641.23 2191.58 -4.05% 2.49% -23.24%

Total CO2 emissions 1658.79 1584.79 1558.66 1942.63 -4.46% 1.68% -18.42%

No. of trips per vehicle 3.55 3.22 3.45 3.51 -9.30% -6.67% -8.26%

No. of total trips 33.62 31 31.63 38.84 -7.79% -1.99% -20.19%

No. of vehicles 9.43 9.69 10.13 14.83 2.76% -4.34% -34.68%

of smaller, more fuel-efficient vehicles where feasible, potentially

reducing CO2 emissions. Conversely, CIACO shows a lower utiliza-

tion of larger vehicles (Vehicle Type 1), with a decrease of 30.53%

compared to IACO and 38.91% compared to ACO. This reallocation

of vehicle types reflects CIACO’s strategy to optimize fleet usage

by deploying vehicles that match the demand requirements of each

route rather than over-relying on larger, less efficient trucks.

Table 2: Average percentage differences in vehicle utilization

Vehicle Type CIACO
a

IACO
b

ACO
c

Impv.
ab

Impv.
ac

1 3.14 4.52 5.14 -30.53% -38.91%

2 12.71 13.67 14.23 -7.02% -10.68%

3 20.14 19.39 18.54 3.87% 8.63%

Table 3: Comparative Experiment Results: Load Imbalance

CIACO
a

IACO
b

Indus.
c

Impv.
ab

Impv.
ac

TLD SD diff. 13188.82 kg 15863.16 kg 12283.22 kg -16.86% 7.37%

TTT SD diff. 33.69 mins 60.82 mins 57.58 mins -44.60% -41.49%

RL SD diff. 23.36 km 50.68 km 58.76 km -53.88% -60.25%

Load imbalance is a critical factor that impacts driver fairness

and overall fleet efficiency. Table 3 analyzes three specific metrics:

Total Load Delivered std diff, Total Travel Time std diff, and Route

length std diff. These metrics were computed based on the standard

deviation of load weights, travel times, and route lengths across

different routes in the CIACO algorithm. The standard deviations

provide an understanding of how balanced the workload is across

the fleet.

CIACO significantly reduces load imbalances compared to both

IACO and Industry standards. Specifically, CIACO achieves a 16.86%

improvement in the Total Load Delivered std diff compared to IACO,

although it is 7.37% less balanced than the Industry. This result high-

lights CIACO’s ability to distribute loadmore evenly across vehicles,

reducing the likelihood of any vehicle overloading. In terms of Total

Travel Time std diff, CIACO shows a substantial 44.60% reduction

compared to IACO and a 41.49% reduction relative to Industry. Fi-

nally, the Route length std diff is where CIACO’s performance is

particularly striking, with a 53.88% improvement over IACO and

a 60.25% improvement over Industry. These results confirm that

CIACO improves efficiency and contributes to a more balanced

workload distribution, which is crucial for driver satisfaction and

fleet management.

The experimental results show that CIACO offers considerable

improvements over traditional ACO, IACO, and Industry-standard

methods in total traveling distance, travel time, CO2 emissions, and

load balancing. CIACO optimizes vehicle utilization and distributes

loads more evenly across the fleet while reducing environmental

impact, making it a highly effective solution for modern logistics.

These findings highlight CIACO’s potential to enhance both opera-

tional efficiency and sustainability in real-world applications.

6 Conclusion
This paper addresses the practical challenges of the MTVRPHFTW

problem in real-world logistics by proposing an enhanced ACO-

based algorithm integrated with clustering techniques. The devel-

oped method includes additional mechanisms aimed at improving

solution quality, such as more effective vehicle utilization and load

balancing, which are essential for last-mile logistics operations.

Using real industrial data, the results demonstrate that the pro-

posed approach outperforms existing methods in both efficiency

and performance.
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