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ABSTRACT
Given an origin, a destination, and a directed graph in which each

edge is associated with a pair of non-negative costs, the bi-objective

routing problem aims to find the set of all Pareto-optimal paths. This

problem is societally important due to several applications, such

as route finding that considers both vehicle travel time and energy

consumption. The problem is challenging due to the potentially

large number of candidate Pareto-optimal paths to be enumerated

during the search, making existing compute-on-demand methods

inefficient due to their high time complexity. One way forward is

the introduction of precomputation algorithms. However, the large

size of the Pareto-optimal set makes it infeasible to precompute

and store all-pair solutions. In addition, generalizing traditional

single-objective hierarchical algorithms to bi-objective cases is non-

trivial because of the non-comparability of candidate paths and

the need to accommodate multiple Pareto-optimal paths for each

node pair. To overcome these limitations, we propose Multi-Level

Bi-Objective Routing (MBOR) algorithms using three novel ideas:

boundary multigraph representation, Pareto frontier encoding, and

two-dimensional cost-interval based pruning. Computational exper-

iments using real road network data demonstrate that the proposed

methods significantly outperform baseline methods in terms of

online runtime and precomputation time.

CCS CONCEPTS
• Applied computing → Multi-criterion optimization and
decision-making; • Information systems → Geographic in-
formation systems.
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Spatial algorithms
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1 INTRODUCTION
Given a graph in which each edge has a pair of non-negative costs,

the bi-objective routing (BOR) problem aims to identify the set of

all Pareto-optimal paths (also known as the Pareto frontier, the non-

dominated set) between an origin and a destination. To compare

paths with two (conflicting) costs, the dominance relation between

the paths is defined as follows [6]: path 𝑝 dominates another path 𝑝′

if both components of the cost of 𝑝 are less than or equal to the cor-

responding components of the cost of 𝑝′, and their costs are not the
same. For example, consider the spatial network shown in Figure

1 and the origin 𝑛0 and destination 𝑛7. Among the five paths con-

necting the origin and destination, the Pareto frontier contains two

non-dominated paths: [𝑛0, 𝑛3, 𝑛5, 𝑛7] and [𝑛0, 𝑛1, 𝑛3, 𝑛5, 𝑛7], with

costs (10, 17) and (11, 16), respectively. By comparison, a path like

[𝑛0, 𝑛2, 𝑛4, 𝑛6, 𝑛7] with cost (18, 20) is not Pareto-optimal, since it is

dominated by path [𝑛0, 𝑛3, 𝑛5, 𝑛7] with cost (10, 17).

The computation of the complete Pareto frontier in BOR prob-

lems is crucial as it provides a comprehensive spectrum of optimal

solutions. Given that users’ preferences vary and are typically un-

known to the computing system, the most desirable solution can

differ. Thus, considering only a subset of the Pareto frontier risks

overlooking the solution that best aligns with a particular user’s

preferences. Drivers of electric vehicles, for example, are keenly

interested in routes that minimize battery drainage as well as travel

time. Different drivers (e.g., eco-conscious drivers, drivers in a hurry,

etc.) may be interested in different subsets of the Pareto-optimal

paths at different times. The BOR problem has other applications as

well. One example is collaborative path selection, where stakehold-

ers with differing objectives must negotiate a universally acceptable

path (e.g., municipal light rail routing through a University campus

[13]). Without the complete Pareto-optimal set, the negotiation

space would have been severely limited. In sum, computing the

complete Pareto-optimal set in BOR provides a holistic range of

https://doi.org/10.1145/3681772.3698215
https://doi.org/10.1145/3681772.3698215
https://doi.org/10.1145/3681772.3698215
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Figure 1: Example input bi-objective network. Paths
[𝑛0, 𝑛3, 𝑛5, 𝑛7] and [𝑛0, 𝑛1, 𝑛3, 𝑛5, 𝑛7] form the Pareto frontier
between 𝑛0 and 𝑛7.

alternatives that can be intelligently filtered to identify the most

desirable paths given a specific user profile and preference system

[18, 30]. This exhaustive approach ensures that solutions are robust,

flexible, and adaptable to various real-world scenarios [28].

The BOR problem is challenging due to the non-comparability of

candidate paths and the potentially large volume of Pareto-optimal

paths that need to be enumerated, which leads to the high time

complexity of the path search process. In fact, it is an NP-hard

problem and the number of solutions may be exponential in the

number of nodes in the worst case [20].

Current methods for bi-objective routing broadly include exact

methods [11, 14, 19, 20, 26] that compute the complete Pareto-

optimal set, as well as non-exact methods based on subset approxi-

mation [9, 21, 27] and constrained shortest path search [1, 16, 22,

23, 31, 32]. Of concern here are the exact methods for solving BOR

problems. An early work by Raith et al. [20] studied how tradi-

tional path enumeration strategies like ranking, label-correcting,

and label-setting (e.g., Dijkstra) could be applied to the BOR prob-

lem. These Dijkstra-like methods were later extended [26] to in-

clude a bi-directional search. A well-received method, NAMOA*dr

[19], shortens the search process using precise label setting to re-

duce the count of dominance checks. Hernández et al.’s bi-objective

A* (BOA*) algorithm [11] further refines the dominance check op-

eration. However, since all these methods are pure compute-on-

demand methods, their time complexity remains unreasonably high

due to the enormous number of Pareto-optimal subpaths encoun-

tered during the online path search process.

Oneway forward is to rethink techniques used to facilitate single-

objective routing and adapt them for today’s online on-demand

BOR environment. A common approach in single-objective rout-

ing involves precomputing all-pair solutions and storing them

online, simplifying the routing process to merely retrieving re-

quested origin-destination pairs from the precomputed results [24].

Additionally, prior work on single-objective hierarchical routing

[2, 3, 10, 12, 15, 29] has explored graph partitioning and storing

only the shortest paths between specific nodes within subgraphs to

reduce precomputation time and storage requirements. These paths

are then concatenated across fragments over a summary graph to

generate the shortest paths throughout the entire graph.

However, generalizing traditional single-objective hierarchical

algorithms to bi-objective cases is non-trivial due tomultiple factors.

First, traditional hierarchical algorithms rely on the assumption

that candidate paths can be sorted based on a single objective. This

assumption does not hold in bi-objective scenarios where paths may

be non-comparable (i.e., non-dominated) with each other. Second,

whereas traditional hierarchical algorithms focus on maintaining

only the shortest path for each node pair, bi-objective scenarios

require the precomputation and retrieval of multiple Pareto-optimal

paths (i.e., the Pareto frontier) between node pairs. This complexity

further motivates the development of innovative pruning tech-

niques that efficiently reduce the search space for hierarchical al-

gorithms.

Thus, we propose a Multi-level Bi-Objective Routing (MBOR) ap-

proach that incorporates three innovative concepts: boundarymulti-

graph representation, Pareto frontier encoding, and two-dimensional

cost-interval based pruning. Our main contributions are as follows:

• We introduce the concept of a boundary multigraph to facil-

itate bi-objective searching across fragments and describe

a novel materialization representation named a Multi-level

Encoded Pareto Frontier View (MEPFV).

• We propose a basic multi-level bi-objective routing algorithm

(MBOR-Basic) to efficiently encode and retrieve Pareto fron-

tiers from an MEPFV.

• We introduce an advanced version of the algorithm to reduce

the search space, MBOR-Adv, which utilizes two novel prun-

ing techniques, one based on a two-dimensional cost-interval

and the second, a multi-edge pruning technique.

• We prove the correctness and completeness of our proposed

methods and validate them through extensive experiments

on real road network datasets. Results show methods with

precomputation have significantly faster online runtime than

the compute-on-demand methods. Further, MBOR-Adv can

significantly reduce the online runtime and precomputation

time compared with the baseline.

Compared with existing data structures for BOR-like problems

[4, 7, 8, 16, 33], our paper introduces novel data structures: the

boundary multigraph and the Multi-level Encoded Pareto Frontier

View, which facilitate bi-objective searching across fragments. In

contrast, [4, 7, 8, 33] utilize contraction hierarchies, a data structure

fundamentally different from the boundary multigraph proposed in

our paper. Working on a different problem that identifies one con-

strained shortest path in the multi-objective scenario, [16] employs

a traditional boundary graph data structure [29], whereas our work

advances this concept by proposing a boundary multigraph struc-

ture. By definition, the traditional boundary graph data structure

[16, 29] does not permit multiple edges between a given node pair,

whereas the boundary multigraph does. Our multigraph representa-

tion offers several advantages over the traditional boundary graph.

For instance, it facilitates min-cut partitioning in multi-level hier-

archical representations by naturally accounting for the number of

edges between each node pair. Furthermore, the known properties

of multigraphs can be leveraged to reason about the properties

of boundary multigraph data structures and their associated algo-

rithms. Moreover, our proposed multigraph representation provides

a natural way to model real-world transportation systems that in-

volve various modes, such as walking, cycling, buses, driving, and

trains.

Scope. This paper focuses on spatial networks where nodes

have specific locations on the surface of the Earth, and edges ge-

ographically connect nodes (e.g., road networks). Such networks

typically feature low density and large diameter. These properties
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Table 1: Table of notations

Symbol Explanation

𝐺 Graph

𝑁 , 𝐸 Node set, edge set

c A bi-objective cost function

𝑐1, 𝑐2 The first/second cost component of c
𝑃𝐺 (𝑜,𝑑) The set of all origin-destination paths in𝐺

𝑃𝐶𝐺 (𝑜,𝑑) The set of costs for all origin-destination paths in𝐺

𝑃𝑂𝐺 (𝑜,𝑑) The set of all Pareto-optimal paths in𝐺

𝑃𝑂𝐶𝐺 (𝑜,𝑑) The set of costs for all Pareto-optimal paths in𝐺

might not hold in other types of graphs, such as social networks.

For simplicity, this paper starts with a two-level hierarchy of the

network for the examples and deployment. The proposed method

can be generalized to a multi-level hierarchy as shown in Sec. ??.
The updating issue is not considered. We use min-cut partitioning

to decompose the original graph into fragments [25].

2 PROBLEM FORMULATION
2.1 Notations and Definitions

Definition 2.1. A spatial network refers to a directed graph

𝐺 = (𝑁, 𝐸, c), where 𝑁 is a set of nodes (e.g., 𝑛0 in Figure 1), and

𝐸 is a set of edges connecting nodes (e.g., [𝑛0, 𝑛1] in Figure 1).

c : 𝐸 → R+ × R+
is a cost function associating a pair of non-

negative costs with each edge (e.g., c([𝑛0, 𝑛1]) = (1, 3)). We denote

the first and second components of c by 𝑐1 and 𝑐2, respectively (e.g.,
𝑐1([𝑛0, 𝑛1]) = 1, 𝑐2([𝑛0, 𝑛1]) = 3).

Definition 2.2. A path 𝑝 is a sequence of edges (e.g., [𝑛5, 𝑛6, 𝑛7]

in Figure 1). A path cost is the sum of the costs on all the edges in a

path (e.g., c([𝑛5, 𝑛6, 𝑛7]) = c([𝑛5, 𝑛6])+c([𝑛6, 𝑛7]) = (2+1, 3+3) = (3, 6)

in Figure 1). For a given origin node 𝑜 and a destination node 𝑑 , the

set of all origin-destination paths is denoted by 𝑃𝐺 (𝑜, 𝑑) (e.g.,

𝑃𝐺 (𝑛5, 𝑛7) = {[𝑛5, 𝑛7], [𝑛5, 𝑛6, 𝑛7]} in Figure 1). The set of costs
for all origin-destination paths is denoted by 𝑃𝐶𝐺 (𝑜, 𝑑) (e.g.,

𝑃𝐶𝐺 (𝑛5, 𝑛7) = {(2, 5), (3, 6)} in Figure 1). The "⊕" symbol denotes the

Minkowski sum [17] between two sets:𝐴⊕𝐵 = {𝑎 + 𝑏 |𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}.
For example, with 𝐴 = {(1, 0), (0, 1)} and 𝐵 = {(0, 0), (1, 1)}, 𝐴 ⊕ 𝐵 =

{(1, 0), (2, 1), (0, 1), (1, 2)}

Definition 2.3. Let 𝑝, 𝑝′ ∈ 𝑃𝐺 (𝑜, 𝑑) be two paths leading from

node 𝑜 to node 𝑑 . Then, c(𝑝) ≺ c(𝑝′) denotes that 𝑐1(𝑝) ≤ 𝑐1(𝑝′),
𝑐2(𝑝) ≤ 𝑐2(𝑝′), and c(𝑝) ̸= c(𝑝′). The symbol "≺" denotes the domi-

nance relationship between paths: 𝑝 ≺ 𝑝′ if c(𝑝) ≺ c(𝑝′). Path 𝑝 is

said to dominate 𝑝′ iff c(𝑝) ≺ c(𝑝′). For example, in Figure 1, path

[𝑛5, 𝑛7] with cost (2, 5) dominates [𝑛5, 𝑛6, 𝑛7], whose cost is (3, 6).

Definition 2.4. Given an origin node 𝑜 and a destination node 𝑑 ,

the Pareto-optimal set (also known as the Pareto frontier, the
non-dominated set), denoted by 𝑃𝑂𝐺 (𝑜, 𝑑) ⊆ 𝑃𝐺 (𝑜, 𝑑), contains

all the origin-destination paths that are not dominated by another

path. The set of costs for all non-dominated paths is defined as a

Pareto-optimal cost set, denoted by 𝑃𝑂𝐶𝐺 (𝑜, 𝑑) ⊆ 𝑃𝐶𝐺 (𝑜, 𝑑). For

example, in Figure 1, 𝑃𝑂𝐺 (𝑛5, 𝑛7) = {[𝑛5, 𝑛7]} since path [𝑛5, 𝑛6, 𝑛7]
is dominated by [𝑛5, 𝑛7], and 𝑃𝑂𝐶𝐺 (𝑛5, 𝑛7) = {(2, 5)}.

2.2 Problem Definition
We formally define the bi-objective routing problem as follows:

Figure 2: Graph partitioning of the spatial network in Figure
1 with 3 fragments.

• Input: A spatial network 𝐺 = (𝑁, 𝐸, c) in which each edge

is associated with a pair of non-negative costs c, an origin

node 𝑜 , and a destination node 𝑑 .

• Output: A set of paths 𝑃𝑂𝐺 (𝑜, 𝑑) between the origin and

destination.

• Objective: 𝑃𝑂𝐺 (𝑜, 𝑑) is the complete Pareto-optimal set for

the pair of costs c.
• Constraints: The costs of the edges are non-negative. We

did not consider traffic flow variability.

Example. Consider the example network shown in Figure 1.

An instance of the bi-objective routing problem on this network

with origin 𝑛0 and destination 𝑛7 (i.e., 𝑃𝑂(𝑛0, 𝑛7)) contains two

paths: [𝑛0, 𝑛3, 𝑛5, 𝑛7] and [𝑛0, 𝑛1, 𝑛3, 𝑛5, 𝑛7], whose cost (i.e., ele-

ments in 𝑃𝑂𝐶(𝑛0, 𝑛7)) is (10, 17) and (11, 16), respectively. Path

[𝑛0, 𝑛2, 𝑛4, 𝑛6, 𝑛7] whose cost is (18, 20), for example, is not Pareto-

optimal since it is dominated by [𝑛0, 𝑛3, 𝑛5, 𝑛7].

3 PROPOSED APPROACH
First, we introduce the concept of a boundary multigraph and define

the Multi-level Encoded Pareto Frontier View (MEPFV). We then

present the basic Multi-level Bi-Objective Routing algorithm, which

is designed to efficiently encode and retrieve Pareto frontiers from

the MEPFV, followed by an advanced version of the algorithm with

two novel pruning techniques.

3.1 Multi-level Encoded Pareto Frontier View
In theMulti-level Encoded Pareto Frontier View (MEPFV)model, we

partition the graph into non-overlapping partitions and encode the

Pareto-optimal path view within each fragment graph. To facilitate

bi-objective searching across these partitions, we introduce the

concept of a boundarymulti-graph that encodes the Pareto frontiers

between boundary nodes. The MEPFV is then composed of a set

of Fragment Pareto-optimal Path Views (FPPV) and a Boundary

Pareto-optimal Path View (BPPV), as defined below.

Definition 3.1. Fragment graph. Given a graph 𝐺 = (𝑁, 𝐸, c),
a partition of the graph is a set of subgraphs 𝑆 =

{
𝑆1, 𝑆2, . . . , 𝑆𝑓

}
where 𝑆𝑖 = (𝑁𝑖 , 𝐸𝑖 , c𝑖 ) includes node set 𝑁𝑖 where 𝑁𝑖 ∩ 𝑁 𝑗 = ∅ for

𝑖 ̸= 𝑗 and
⋃𝑓

𝑖=1
𝑁𝑖 = 𝑁 , and 𝐸𝑖 is a set of local edges (e.g., black edges

in Figure 2) connecting two nodes in 𝑁𝑖 . Each 𝑆𝑖 = (𝑁𝑖 , 𝐸𝑖 , c𝑖 ) is a
fragment graph (e.g., 3 fragment graphs in Figure 2). Boundary
nodes 𝑁𝑏

are defined as the set of nodes that have a neighbor in

more than one fragment (e.g., 𝑛3 in Figure 2), while the remaining

nodes are local nodes (e.g., 𝑛1 in Figure 2). Edges connecting two
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nodes from different fragment graphs are called boundary edges,
while other edges are local edges.

Definition 3.2. Given a set of fragment graphs, the encoded

fragment Pareto-optimal path view (FPPV) stores the Pareto-

optimal sets between all node-to-boundary and boundary-to-node
pairs within each fragment. The encoded path view for each frag-

ment is defined as a set of tables of 4-tuples [destination, the next

hop, path cost 1, path cost 2] where each table is associated with

an origin node. Here, "next hop" refers to the direct successor node

within the Pareto-optimal path. For example, in Figure 3 (a), the

fragment encoded path view of node 𝑛0 in fragment 𝑆1 denoted by

the tuple [𝑛3, 𝑛1, 4, 5], tells us that there is a Pareto-optimal path

from 𝑛0 to 𝑛3 in 𝑆1, whose cost is (4, 5) and whose next-hop is 𝑛1.

Definition 3.3. Boundary Multigraph. Given a graph 𝐺 parti-

tioned into fragments, along with each fragment graph’s Fragment

Pareto-optimal Path View (FPPV), a boundary multigraph is de-

fined as𝐺𝑏
= (𝑁𝑏 , 𝐸𝑏 ,𝐶𝑏

). Here, 𝑁𝑏
represents the set of boundary

nodes, 𝐸𝑏 consists of multi-edges
1
connecting nodes from 𝑁𝑏

, and

𝐶𝑏
: 𝐸𝑏 → P(R+ × R+

), where P denotes the power set, is a cost

function that associates each multi-edge with a set of pairs of non-

negative costs. The construction of 𝐸𝑏 and the corresponding cost

function depends on the relationship between its endpoints:

(1) If both endpoints are within the same fragment, for each

encoded fragment Pareto-optimal path between them, a local

Pareto edge is defined (refer to the brown dashed edges in

Figure 3 (b)). The presence of several Pareto-optimal paths

between a pair of boundary nodes classifies 𝐺𝑏
as a multi-

graph. In the implementation of 𝐺𝑏
, we use amulti-edge

connecting these nodes, associated with the set of Pareto-

optimal costs, to represent the set of local Pareto edges be-

tween the same node pairs. For example, two local Pareto

edges between 𝑛0 and 𝑛3 in Figure 3 can be represented as a

multi-edge with cost set {(3, 6), (4, 5)}.
(2) If two endpoint nodes belong to different fragments, there is

a corresponding multi-edge for each boundary edge in the

original graph 𝐺 (refer to the green edges in Figure 3 (b)).

Each such multi-edge is associated with a single cost pair,

identical to the cost of the original edge in 𝐺 .

Definition 3.4. Given a boundarymultigraph, the encodedBound-
ary Pareto-optimal Path View (BPPV) stores the Pareto frontiers

between all boundary-to-boundary node pairs within the boundary

multigraph. As shown in Figure 3 (b), the encoded boundary path

view is defined as a collection of tables, each consisting of 5-tuples:

[destination, the fragment ID of the next hop, the next hop, path

cost 1, path cost 2], where each table is associated with an origin

boundary node. In this context, "the next hop" in the boundary

multigraph refers to the successor boundary node along with the

corresponding cost to differentiate edges in a multigraph.

3.2 Basic Multi-level Bi-objective Routing
Our basic method for multi-level bi-objective routing has three

parts, an algorithm to precompute MEPFV, a helper function to

1
In a multigraph, multiple edges connecting a pair of nodes can be represented by

separate edges with identifiers or by a multi-edge with a set of costs. Fig. 3 uses the first

notation for visualization, but the rest of this paper uses the second for implementation.

Figure 3: An example MEPFV with boundary multigraph
encoding based on the graph partitioning shown in Figure 2.

encode Pareto-optimal path views during precomputation, and

last, an algorithm to retrieve Pareto frontiers for a given origin-

destination query using MEPFV in online routing.

3.2.1 MBOR-Basic: Precomputation. The precomputation algorithm

(Algorithm 1), begins by identifying boundary edges that connect

nodes from different fragments, designating the endpoints of these

edges as boundary nodes (lines 1 - 4). It then encodes the fragment

Pareto-optimal path view (FPPV) for each fragment by invoking the

paretoOptEncoding function (see Algorithm 2). Next, the boundary

multigraph is constructed (lines 6 - 12) following the procedure

outlined in Definition 3.3. In this process, the Succ function re-

trieves the set of successor nodes connected to a node, and the

𝑖𝑛𝑠𝑒𝑟𝑡𝑀𝑢𝑙𝑡𝑖𝐸𝑑𝑔𝑒 function creates a multi-edge if one does not exist

and then appends a cost to the multi-edge’s cost set. The costs

are retrieved from 𝐹𝑃𝑃𝑉𝐹𝑟𝑎𝑔(𝑛)(𝑛, 𝑛
′
).𝑐𝑜𝑠𝑡𝑠 , which holds the local

Pareto frontier costs between nodes 𝑛 and 𝑛′ within their fragment

stored in the FPPV. Finally, the boundary Pareto-optimal path view

(BPPV) is encoded by applying paretoOptEncoding (Algorithm 2) to

the boundary multigraph.

The paretoOptEncoding function (Algorithm 2), encodes the Pareto

frontiers for all boundary-related node pairs (node-to-boundary

and boundary-to-node) within a given multigraph. It enumerates

all nodes as potential starting points and utilizes a multigraph bi-

objective Dijkstra search to compute one-to-all Pareto frontiers

from each node. Each path explored from a starting node is repre-

sented by a label 𝑙 , where 𝑛𝑜𝑑𝑒(𝑙) indicates the current node, c(𝑙)
specifies the path costs, and 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑙) points to the previous label

in the path (lines 1-3). Then, a Dijkstra-like search proceeds using

a priority queue that organizes labels by their cost vectors in lexi-

cographic order (line 5). The design of the priority queue ensures

that the Pareto frontier search progresses such that the first cost

component increases while the second decreases, thereby requiring

only the maintenance of the current minimum of the second cost
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Algorithm 1:MBOR-Basic: Precomputing MEPFV

Input: A graph𝐺 = (𝑁, 𝐸, c), a partition of𝐺 : 𝑆 =

{
𝑆1, 𝑆2, . . . , 𝑆𝑓

}
Output: The MEPFV for𝐺 including FPPV and BPPV

1 𝑁𝑏
:= {}

2 for each 𝑒 ∈ 𝐸 do
3 if 𝐹𝑟𝑎𝑔(𝑒.𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑈 ) ̸= 𝐹𝑟𝑎𝑔(𝑒.𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑉 ) then
4 𝑁𝑏

= 𝑁𝑏 ∪ {𝑒.𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑈 , 𝑒.𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑉 }

5 𝐹𝑃𝑃𝑉𝑆𝑖 = 𝑝𝑎𝑟𝑒𝑡𝑜𝑂𝑝𝑡𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑆𝑖 ), ∀𝑆𝑖 ∈ 𝑆

6 for each (𝑛𝑏
𝑖
, 𝑛𝑏

𝑗
∈ 𝑁𝑏

) ∧ 𝑛𝑏
𝑖
̸= 𝑛𝑏

𝑗
do

7 if 𝐹𝑟𝑎𝑔(𝑛𝑏
𝑖
) ̸= 𝐹𝑟𝑎𝑔(𝑛𝑏

𝑗
) then

8 if 𝑛𝑏
𝑗
∈ 𝑆𝑢𝑐𝑐(𝑛𝑏

𝑖
) then

9 𝐺𝑏 .𝑖𝑛𝑠𝑒𝑟𝑡𝑀𝑢𝑙𝑡𝑖𝐸𝑑𝑔𝑒(𝑛𝑏
𝑖
, 𝑛𝑏

𝑗
, c([𝑛𝑏

𝑖
, 𝑛𝑏

𝑗
]))

10 else
11 for each 𝑐𝑜𝑠𝑡 ∈ 𝐹𝑃𝑃𝑉

𝐹𝑟𝑎𝑔(𝑛𝑏
𝑖
)
(𝑛𝑏

𝑖
, 𝑛𝑏

𝑗
).𝑐𝑜𝑠𝑡𝑠 do

12 𝐺𝑏 .𝑖𝑛𝑠𝑒𝑟𝑡𝑀𝑢𝑙𝑡𝑖𝐸𝑑𝑔𝑒(𝑛𝑏
𝑖
, 𝑛𝑏

𝑗
, 𝑐𝑜𝑠𝑡 )

13 𝐵𝑃𝑃𝑉 = 𝑝𝑎𝑟𝑒𝑡𝑜𝑂𝑝𝑡𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝐺𝑏
)

14 return BPPV and 𝐹𝑃𝑃𝑉𝑆𝑖 , ∀𝑆𝑖 ∈ 𝑆

for each node to determine if a new label is dominated (lines 12 and

19). Whenever an edge cost is encountered in the multigraph, then a

corresponding new label is generated and inserted into the priority

queue if not dominated (see lines 15-21). The search continues until

all potential paths are evaluated. After each search from a start-

ing node, line 22 encodes the computed Pareto frontiers between

boundary-related node pairs into a Pareto-optimal path view to

reduce storage costs.

3.2.2 MBOR-Basic: Online Pareto Frontier Retrieval. With theMEPFV

precomputed, Algorithm 3 proceeds to retrieve the Pareto frontier

for a given 𝑜-𝑑 pair, including the following queries sent to MEPFV:

• Boundary(𝑆𝑖 ): Returns the set of boundary nodes for 𝑆𝑖 .

• Graph.ParetoOpt(𝑜′, 𝑑′): Returns the Pareto-optimal path set

between 𝑜′ and 𝑑′ within 𝐺𝑟𝑎𝑝ℎ by iteratively looking up

MEPFV using (next-hop, 𝑐1, 𝑐2) as the keys.

• 𝐸𝑥𝑝𝑎𝑛𝑑𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑃𝑎𝑡ℎ𝑆𝑒𝑡 (𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑃𝑎𝑡ℎ𝑆𝑒𝑡 ): Expands each

boundary path in the input set and return the set that con-

tains all corresponding paths in the original 𝐺 by using the

𝐸𝑥𝑝𝑎𝑛𝑑𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝐸𝑑𝑔𝑒(𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑀𝑢𝑙𝑡𝑖𝑒𝑑𝑔𝑒) for each bound-

ary multi-edge of each boundary path.

• 𝐸𝑥𝑝𝑎𝑛𝑑𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝐸𝑑𝑔𝑒(𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑀𝑢𝑙𝑡𝑖𝑒𝑑𝑔𝑒): If two endpoints

of the boundary multi-edge are within the same fragment,

expand it by iteratively looking up the MEPFV for this frag-

ment using (next-hop, 𝑐1, 𝑐2) as the keys. Otherwise, returns

the input edge.

• DominanceCheck(pathSet): Returns the Pareto-optimal sub-

set from the given set.

The algorithm initially identifies a superset of the Pareto-optimal

solutions, 𝑃𝑂𝑠𝑢𝑝
, by enumerating all possible boundary node pairs

between the origin fragment and destination fragment and com-

bining the precomputed Pareto frontiers of origin-to-boundary,

boundary-to-boundary, and boundary-to-destination paths (lines

2-4). Note that since every combination of the Pareto-optimal sub-

paths needs to be considered as a candidate Pareto-optimal path, we

Algorithm 2:MBOR-Basic: ParetoOptEncoding for 𝐺0

Input: A multigraph𝐺0 = (𝑁0, 𝐸0,𝐶0)

Output: The Pareto-optimal path view (PPV) of𝐺0

1 Function initializeNodeStates(𝑁0, 𝑛𝑠𝑡𝑎𝑟𝑡):
2 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑠(𝑛) := ∅, ∀𝑛 ∈ 𝑁0, 𝑐

2

𝑚𝑖𝑛
(𝑛) := ∞, ∀𝑛 ∈ 𝑁0

3 return new label 𝑙0 with 𝑛𝑜𝑑𝑒(𝑙0) = 𝑛𝑠𝑡𝑎𝑟𝑡 , c(𝑙0) = (0, 0),

𝑝𝑎𝑟𝑒𝑛𝑡 (𝑙0) := 𝑛𝑢𝑙𝑙

4 Function initializePriorityQueue(𝑙0):
5 Initialize a priority queue:𝑂𝑝𝑒𝑛, where labels are prioritized

by their c-vectors in lexicographic order and insert 𝑙0 to𝑂𝑝𝑒𝑛

6 return𝑂𝑝𝑒𝑛

7 for each 𝑛𝑠𝑡𝑎𝑟𝑡 ∈ 𝑁0 in parallel do
8 𝑙0 := initializeNodeStates(𝑁0, 𝑛𝑠𝑡𝑎𝑟𝑡)
9 𝑂𝑝𝑒𝑛 := initializePriorityQueue(𝑙0)

10 while𝑂𝑝𝑒𝑛 ̸= ∅ do
11 𝑙 := 𝑂𝑝𝑒𝑛.𝑝𝑜𝑝()

12 if 𝑐2(𝑙 ) ≥ 𝑐2
𝑚𝑖𝑛

(𝑛𝑜𝑑𝑒(𝑙 )) then
13 continue

14 𝑐2
𝑚𝑖𝑛

(𝑛𝑜𝑑𝑒(𝑙 )) = 𝑐2(𝑙 ), Add 𝑙 to 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑠(𝑛𝑜𝑑𝑒(𝑙 ))

15 for each 𝑛′ ∈ 𝑆𝑢𝑐𝑐(𝑛𝑜𝑑𝑒(𝑙 )) do
16 for each edgeCost ∈ 𝐶0[𝑛𝑜𝑑𝑒(𝑙 ), 𝑛

′
] do

17 𝑙 ′ := a new label with 𝑛𝑜𝑑𝑒(𝑙 ′) = 𝑛′

18 c(𝑙 ′) = c(𝑙 ) + edgeCost, 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑙 ′) := 𝑙

19 if 𝑐2(𝑙 ′) ≥ 𝑐2
𝑚𝑖𝑛

(𝑛𝑜𝑑𝑒(𝑙 ′)) then
20 continue

21 Add 𝑙 ′ to𝑂𝑝𝑒𝑛

22 𝑃𝑃𝑉 (𝑛𝑠𝑡𝑎𝑟𝑡 ) := Create PPV from 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑠

23 return PPV

use a Minkawskin sum ("⊕") in line 4 to generate the full combina-

tion of the precomputed Pareto frontiers. If the origin and destina-

tion are within the same fragment, the local Pareto-optimal solution

set is also added to the superset (lines 5-6). Finally, the Pareto fron-

tier is generated with the non-dominated subset of 𝑃𝑂𝑠𝑢𝑝
.

Example execution trace:Consider the exampleMEPFV shown

in Figure 3, and a BOR query from 𝑛0 to 𝑛7. As shown in Table

2, MBOR-Basic generates the cost of Pareto superset (𝑃𝑂𝑠𝑢𝑝
) by

retrieving the encoded Pareto-optimal path costs (𝑃𝑂𝐶) from the ori-

gin to the origin boundary node, from the origin boundary node to

the destination boundary node, and from the destination boundary

node to the destination node for all possible pairs of origin bound-

ary nodes (i.e., 𝑛0, 𝑛3) and destination boundary nodes (i.e., 𝑛5,

𝑛6). Then 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝐶ℎ𝑒𝑐𝑘({(12, 17), (11, 18), (11, 16), (10, 17)}) =

{(11, 16), (10, 17)}, and the corresponding Pareto-optimal paths can

be expanded by querying the next-hop in MEPFV.

3.3 Advanced Multi-level Bi-objective Routing
We developed an advanced version of the MBOR algorithm, MBOR-

Adv, that reduces the search space through novel pruning tech-

niques, namely two-dimensional cost-interval based pruning and

multi-edge pruning.

3.3.1 Two-dimensional Cost-interval based Pruning in Online Rout-
ing. During the online Pareto frontier retrieval phase in MBOR, the

Pareto-optimal superset (𝑃𝑂𝑠𝑢𝑝
in Algorithm 3) is constructed by
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Algorithm 3:MBOR-Basic: Pareto Frontier Retrieval

Input:MEPFV of a graph𝐺 , 𝑜 : origin, 𝑑 : destination

Output: Pareto-optimal path set 𝑃𝑂𝐺 (𝑜,𝑑)

1 𝑃𝑂𝑠𝑢𝑝
:= {}

2 for each 𝑜𝐵𝑁 ′ ∈ 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐹𝑟𝑎𝑔(𝑜)) do
3 for each 𝑑𝐵𝑁 ′ ∈ 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡 (𝑑)) do
4 𝑃𝑂𝑠𝑢𝑝

= 𝑃𝑂𝑠𝑢𝑝 ∪
𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝐶ℎ𝑒𝑐𝑘(𝐹𝑟𝑎𝑔(𝑜).𝑃𝑎𝑟𝑒𝑡𝑜𝑂𝑝𝑡 (𝑜, 𝑜𝐵𝑁 ′

) ⊕
𝐸𝑥𝑝𝑎𝑛𝑑𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑃𝑎𝑡ℎ𝑆𝑒𝑡 (𝐺𝑏 .𝑃𝑎𝑟𝑒𝑡𝑜𝑂𝑝𝑡 (𝑜𝐵𝑁 ′, 𝑑𝐵𝑁 ′

))⊕
𝐹𝑟𝑎𝑔(𝑑).𝑃𝑎𝑟𝑒𝑡𝑜𝑂𝑝𝑡 (𝑑𝐵𝑁 ′, 𝑑))

5 if Fragment(o) == Fragment(d) then
6 𝑃𝑂𝑠𝑢𝑝

= 𝑃𝑂𝑠𝑢𝑝 ∪ 𝐹𝑟𝑎𝑔(𝑜).𝑃𝑎𝑟𝑒𝑡𝑜𝑂𝑝𝑡 (𝑜,𝑑)

7 𝑃𝑂 := 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝐶ℎ𝑒𝑐𝑘(𝑃𝑂𝑠𝑢𝑝
)

8 return PO

Table 2: Pareto frontier retrieval using MEPFV in Fig. 3.
𝑃𝑂𝐶(𝑜, 𝑜𝐵𝑁 ) 𝑃𝑂𝐶(𝑜𝐵𝑁,𝑑𝐵𝑁 ) 𝑃𝑂𝐶(𝑑𝐵𝑁,𝑑) Cost of 𝑃𝑂𝑠𝑢𝑝

(𝑛0, 𝑛0) = {(0, 0)} (𝑛0, 𝑛5) = {(8, 12), (9, 11)} (𝑛5, 𝑛7) = {(2, 5)} {(10, 17), (11, 16)}
(𝑛0, 𝑛0) = {(0, 0)} (𝑛0, 𝑛6) = {(10, 15), (11, 14)} (𝑛6, 𝑛7) = {(1, 3)} {(11, 18), (12, 17)}

(𝑛0, 𝑛3) = {(3, 6), (4, 5)} (𝑛3, 𝑛5) = {(5, 6)} (𝑛5, 𝑛7) = {(2, 5)} {(10, 17), (11, 16)}
(𝑛0, 𝑛3) = {(3, 6), (4, 5)} (𝑛3, 𝑛6) = {(7, 9)} (𝑛6, 𝑛7) = {(1, 3)} {(11, 18), (12, 17)}

retrieving and combining the encoded Pareto frontiers from the

origin to origin boundary nodes, between pairs of boundary nodes,

and from destination boundary nodes to the destination. This pro-

cess involves all feasible combinations of boundary node pairs that

facilitate transitions from the origin fragment to the destination

fragment, ensuring the algorithm’s completeness. However, this

combination of Pareto frontiers can significantly increase the size

of 𝑃𝑂𝑠𝑢𝑝
due to the combinatorial nature of the Minkowski sum.

For instance, the Minkowski sum of two sets with sizes𝑚 and 𝑛

can produce a result set with a size of up to𝑚𝑛. This expansion

makes it time-consuming to generate 𝑃𝑂𝑠𝑢𝑝
and to perform dom-

inance checks on it during the online routing phase. To address

these challenges while preserving the correctness and completeness

of the algorithm, we propose a novel pruning technique based on

two-dimensional cost-intervals. This method efficiently prunes the

search space of candidate boundary nodes without generating the

entire combined Pareto frontiers. A two-dimensional cost-interval

for the Pareto frontier between any node pair is defined as follows:

Definition 3.5. For a given node pair (𝑛, 𝑛′), let 𝑝∗
1
, 𝑝∗

2
∈ 𝑃𝐺 (𝑛, 𝑛

′
)

be the shortest paths minimizing the first and second cost compo-

nents, respectively. We define the two-dimensional cost-interval
(2DCI) of the Pareto frontier between 𝑛 and 𝑛′ as ([𝑐1(𝑝∗

1
), 𝑐1(𝑝∗

2
)],

[𝑐2(𝑝∗
2
), 𝑐2(𝑝∗

1
)]).

The 2DCI, as defined in Definition 3.5, effectively represents a

minimum bounding rectangle of the corresponding Pareto frontier

in the objective space, based on the shortest paths that minimize

each cost component. Specifically, for any path 𝑝 within the Pareto-

optimal set 𝑃𝑂𝐺 (𝑛, 𝑛
′
), the following conditions hold: 𝑐1(𝑝∗

1
) ≤

𝑐1(𝑝) ≤ 𝑐1(𝑝∗
2
) and 𝑐2(𝑝∗

2
) ≤ 𝑐2(𝑝) ≤ 𝑐2(𝑝∗

1
). These conditions

confirm that the 2DCI captures the full range of Pareto-optimal costs

between the nodes 𝑛 and 𝑛′. Furthermore, the optimal substructure

property of shortest paths ensures that combining the 2D cost-

intervals for sequential node pairs is straightforward, involving

just the addition of corresponding cost components.

Figure 4: An example two-dimensional cost-interval based
pruning in online Pareto frontier retrieval in MBOR-Adv.

Figure 4 shows an example of the generation of a 2DCI for the

combined Pareto frontier corresponding to a boundary node pair

(𝑜𝐵𝑁𝑖 , 𝑑𝐵𝑁𝑖 ) between an origin and a destination. Assume the costs

in the precomputed Pareto-optimal path views (𝑃𝑂𝐶 , bins in Fig. 4)

are sorted in lexicographic order, then the summation of the first

element in each bin produces 𝑐1(𝑝∗
1
), 𝑐2(𝑝∗

1
) for the 2D cost-interval,

while the summation of the last element yields 𝑐1(𝑝∗
2
), 𝑐2(𝑝∗

2
). After

generating the 2DCIs for all candidate boundary node pairs, the

dominant relationship between 2DCIs is then defined as follows:

Definition 3.6. A 2D cost-interval 2𝐷𝐶𝐼 is said to dominate
another 2𝐷𝐶𝐼 ′ if any of the following conditions holds:

1) (2𝐷𝐶𝐼 .min(𝑐1), 2𝐷𝐶𝐼 .max(𝑐2)) ≺ (2𝐷𝐶𝐼 ′ .min(𝑐1), 2𝐷𝐶𝐼 ′ .min(𝑐2))

or 2) (2𝐷𝐶𝐼 .max(𝑐1), 2𝐷𝐶𝐼 .min(𝑐2)) ≺ (2𝐷𝐶𝐼 ′ .min(𝑐1), 2𝐷𝐶𝐼 ′ .min(𝑐2))

As shown in Figure 4, the benchmark 2DCI dominates any 2DCIs

whose lower-left corner (min(𝑐1),min(𝑐2)) is positioned within the

shaded area (e.g., the 2DCI corresponding to (𝑜𝐵𝑁𝑖 , 𝑑𝐵𝑁𝑖 )). The

following lemma then facilitates the effective pruning of boundary

node pairs, such as (𝑜𝐵𝑁𝑖 , 𝑑𝐵𝑁𝑖 ) in Fig. 4, during online routing:

Lemma 3.7. If a 2D cost-interval is dominated, then all correspond-
ing paths associated with it are dominated paths.

Algorithm 4 outlines the pseudocode for online Pareto frontier

retrieval in MBOR-Adv using 2DCI-based pruning. The algorithm

starts by constructing the combined 2DCI for each potential bound-

ary node pair from the MEPFV (see line 2), as shown in Figure

4. For brevity, we omit explicit mention of the origin and desti-

nation nodes in the combined representation. Thus, the 2DCI en-

compassing transitions from 𝑜 to an origin boundary node (𝑜𝐵𝑁 ),

from 𝑜𝐵𝑁 to a destination boundary node (𝑑𝐵𝑁 ), and from 𝑑𝐵𝑁

to 𝑑 is collectively referred to as 2𝐷𝐶𝐼 (𝑜𝐵𝑁,𝑑𝐵𝑁 ). Given that the

Pareto-optimal paths are explored in lexicographic order when

precomputing the MEPFV, the costs in the precomputed POC are

inherently sorted in lexicographic order, thus allowing for a con-

stant time complexity for the generation of the combined 2DCI for

each boundary node pair. Subsequently, we select the 2DCI with the

minimum (min(𝑐1),min(𝑐2)) in lexicographic order (i.e., the most

leftward rectangle in the objective space) as the benchmark 2DCI
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(see lines 3-4). Then, a 2DCI-based pruning check is performed in

lines 7-9 to directly prune boundary node pairs before performing

the Minkowski sum to reduce the search space.

Algorithm 4:MBOR-Adv: Online Pareto Frontier Retrieval

using 2D Cost-interval based Pruning

Input:MEPFV of a graph𝐺 , 𝑜 : origin, 𝑑 : destination

Output: Pareto-optimal path set 𝑃𝑂𝐺 (𝑜,𝑑)

1 𝑃𝑂𝑠𝑢𝑝
:= {}

2 2𝐷𝐶𝐼 (𝑜𝐵𝑁𝑖 , 𝑑𝐵𝑁𝑖 ) :=

2𝐷𝐶𝐼𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑀𝐸𝑃𝐹𝑉 ,𝑜𝐵𝑁𝑖 , 𝑑𝐵𝑁𝑖 ), ∀𝑜𝐵𝑁𝑖 ∈
𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐹𝑟𝑎𝑔(𝑜)), 𝑑𝐵𝑁𝑖 ∈ 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐹𝑟𝑎𝑔(𝑑))

3 Find the benchmark ˆ2𝐷𝐶𝐼 with the minimum (𝑐1(𝑝∗
1
), 𝑐2(𝑝∗

2
)) in

lexicographic order

4 Denote the bounds of ˆ2𝐷𝐶𝐼 as ˆ𝑐1(𝑝∗
1
), ˆ𝑐1(𝑝∗

2
), ˆ𝑐2(𝑝∗

2
), ˆ𝑐2(𝑝∗

1
)

5 for each 𝑜𝐵𝑁 ∈ 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐹𝑟𝑎𝑔(𝑜)) do
6 for each 𝑑𝐵𝑁 ∈ 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐹𝑟𝑎𝑔(𝑑)) do
7 2𝐷𝐶𝐼 ′ := 2𝐷𝐶𝐼 (𝑜𝐵𝑁,𝑑𝐵𝑁 )

8 if ( ˆ𝑐1(𝑝∗
1
), ˆ𝑐2(𝑝∗

1
)) ≺ (2𝐷𝐶𝐼 ′ .𝑚𝑖𝑛(𝑐1), 2𝐷𝐶𝐼 ′ .𝑚𝑖𝑛(𝑐2)) ∨

(
ˆ𝑐1(𝑝∗
2
), ˆ𝑐2(𝑝∗

2
)) ≺ (2𝐷𝐶𝐼 ′ .𝑚𝑖𝑛(𝑐1), 2𝐷𝐶𝐼 ′ .𝑚𝑖𝑛(𝑐2)) then

9 continue

10 𝑃𝑂𝑠𝑢𝑝
= 𝑃𝑂𝑠𝑢𝑝 ∪

𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝐶ℎ𝑒𝑐𝑘(𝐹𝑟𝑎𝑔(𝑜).𝑃𝑎𝑟𝑒𝑡𝑜𝑂𝑝𝑡 (𝑜, 𝑜𝐵𝑁 ) ⊕
𝐸𝑥𝑝𝑎𝑛𝑑𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑃𝑎𝑡ℎ𝑆𝑒𝑡 (𝐺𝑏 .𝑃𝑎𝑟𝑒𝑡𝑜𝑂𝑝𝑡 (𝑜𝐵𝑁 ′, 𝑑𝐵𝑁 ′

)⊕
𝐹𝑟𝑎𝑔(𝑑).𝑃𝑎𝑟𝑒𝑡𝑜𝑂𝑝𝑡 (𝑑𝐵𝑁,𝑑))

11 if Fragment(o) == Fragment(d) then
12 𝑃𝑂𝑠𝑢𝑝

= 𝑃𝑂𝑠𝑢𝑝 ∪ 𝐹𝑟𝑎𝑔(𝑜).𝑃𝑎𝑟𝑒𝑡𝑜𝑂𝑝𝑡 (𝑜,𝑑)

13 𝑃𝑂 := 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝐶ℎ𝑒𝑐𝑘(𝑃𝑂𝑠𝑢𝑝
)

14 return PO

Example execution trace: Consider the MEPFV shown in Fig-

ure 3, and a BOR query from 𝑛0 to 𝑛7. The candidate boundary node

pairs include (𝑛0, 𝑛5), (𝑛0, 𝑛6), (𝑛3, 𝑛5), and (𝑛3, 𝑛6). MBOR-Adv ini-

tially computes the combined 2DCIs corresponding to these bound-

ary node pairs: 2𝐷𝐶𝐼 (𝑛0, 𝑛5) = ([10, 11], [16, 17]), 2𝐷𝐶𝐼 (𝑛0, 𝑛6) =

([11, 12], [17, 18]), 2𝐷𝐶𝐼 (𝑛3, 𝑛5) = ([10, 11], [16, 17]), and 2𝐷𝐶𝐼 (𝑛3, 𝑛6) =

([11, 12], [17, 18]). The algorithm selects 2𝐷𝐶𝐼 (𝑛0, 𝑛5) as the bench-

mark and prunes the boundary node pairs (𝑛0, 𝑛6) and (𝑛3, 𝑛6) due

to their dominance ((10,17)≺(11,17)). Then, the Pareto-optimal su-

perset (𝑃𝑂𝑠𝑢𝑝
) construction is documented in Table 3. It is worth

noting that, in this example, each boundary node pair generates

two combined Pareto-optimal paths, yielding a complexity for gen-

erating 2𝐷𝐶𝐼 equivalent to directly generating 𝑃𝑂𝑠𝑢𝑝
. However, in

practical scenarios, generating 2𝐷𝐶𝐼 is executed in constant time

with exactly two operations (heads combination and tails combina-

tion), while the complexity of generating 𝑃𝑂𝑠𝑢𝑝
is influenced by

the number of Pareto-optimal subpaths due to the combinatorial

nature in the Minkowski sum operation. More details are discussed

in Sec. 5.

Table 3: Advanced Pareto frontier retrieval using MEPFV in
Fig. 3. Boundary node pairs (𝑛0, 𝑛6), (𝑛3, 𝑛6) are 2DCI-pruned.

𝑃𝑂𝐶(𝑜, 𝑜𝐵𝑁 ) 𝑃𝑂𝐶(𝑜𝐵𝑁,𝑑𝐵𝑁 ) 𝑃𝑂𝐶(𝑑𝐵𝑁,𝑑) Cost of 𝑃𝑂𝑠𝑢𝑝

(𝑛0, 𝑛0) = {(0, 0)} (𝑛0, 𝑛5) = {(8, 12), (9, 11)} (𝑛5, 𝑛7) = {(2, 5)} {(10, 17), (11, 16)}
(𝑛0, 𝑛3) = {(3, 6), (4, 5)} (𝑛3, 𝑛5) = {(5, 6)} (𝑛5, 𝑛7) = {(2, 5)} {(10, 17), (11, 16)}

3.3.2 Multi-edge Pruning for Bounday Multigraph Encoding in Pre-
computation. In the precomputation phase, the boundary multi-

graph can become dense due to multiple local Pareto edges between

boundary nodes from the same fragment. This density significantly

contributes to the encoding time of the boundary multigraph (line

13 in Algorithm 1). To address this, we introduce two multi-edge

pruning techniques that reduce the search space for encoding the

boundary multigraph, detailed in Algorithm 5. The first pruning

criterion (lines 10-11), is supported by the following lemma:

Lemma 3.8. Bi-objective Triangle Inequality: In a bi-objective
scenario, combining the Pareto-optimal paths between nodes 𝑛 and
𝑛′, and nodes 𝑛′ and 𝑛′′, results in paths that are either dominated
by or belong to the Pareto frontier from 𝑛 to 𝑛′′.

The validity of this lemma is established by integrating the def-

initions of Pareto-optimality and the triangle inequality. When

encoding the boundary multigraph, if a label has already reached

node 𝑛 from another local node 𝑛0 within the same fragment, fur-

ther searches from this label to another local node 𝑛′ can be pruned

(line 10). This is because any path generated from 𝑛0 to 𝑛
′
would

either be dominated by or already explored through direct labels

from 𝑛0 to 𝑛
′
.

The second pruning technique leverages the fact that costs within

boundary multi-edges are stored in lexicographic order. When gen-

erating new labels, we enumerate current edge costs in reverse

order (line 12 in Algorithm 5), prioritizing an increase in the second

cost component. If the current edge cost already exceeds the mini-

mum possible second cost (lines 15-16), we can prune subsequent

edge costs in the multi-edge.

4 THEORETICAL EVALUATION
We analyzed the proposed algorithms theoretically for correctness

and completeness. An algorithm for the BOR problem is considered

to be correct and complete if its output path set is both a subset

and a superset of the Pareto-optimal set.

Theorem 4.1. Correctness and completeness: At the termina-
tion of MBOR-Basic and MBOR-Adv, the solution set produced is the
complete Pareto frontier from the origin to the destination.

Proof Sketch. In a given origin-destination pair, the origin

and destination nodes may be located either in the same fragment

or in different fragments. The correctness and completeness of

MBOR are guaranteed by the following lemmas for these two cases,

respectively. (1) The Pareto frontier from origin 𝑜 to destination 𝑑

from different fragments corresponds to the Pareto-optimal subset

of all possible concatenated Pareto-optimal paths composed of three

parts: from 𝑜 to a local boundary node 𝑛𝑖 , from 𝑛𝑖 to another local

boundary node 𝑛 𝑗 of 𝑑 , and from 𝑛 𝑗 to 𝑑 . (2) If both the origin and

destination are within the same fragment, then the Pareto frontier

is the Pareto-optimal subset of the union of the two, that is: the local

Pareto frontier within the fragment, and all possible concatenated

Pareto-optimal paths composed of three parts: from origin 𝑜 to a

local boundary node 𝑛𝑖 , from 𝑛𝑖 to another local boundary node 𝑛 𝑗 ,

and from 𝑛 𝑗 to 𝑑 . □
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Algorithm 5: MBOR-Adv: ParetoOptEncoding for Bound-

ary Multigraph

Input: A boundary multigraph𝐺0 = (𝑁0, 𝐸0,𝐶0)

Output: The boundary Pareto-optimal path view (BPPV) of𝐺0

1 for each 𝑛𝑠𝑡𝑎𝑟𝑡 ∈ 𝑁0 in parallel do
2 𝑙0 := initializeNodeStates(𝑁0, 𝑛𝑠𝑡𝑎𝑟𝑡)
3 𝑂𝑝𝑒𝑛 := initializePriorityQueue(𝑙0)

4 while𝑂𝑝𝑒𝑛 ̸= ∅ do
5 𝑙 := 𝑂𝑝𝑒𝑛.𝑝𝑜𝑝()

6 if 𝑐2(𝑙 ) ≥ 𝑐2
𝑚𝑖𝑛

(𝑛𝑜𝑑𝑒(𝑙 )) then
7 continue

8 𝑐2
𝑚𝑖𝑛

(𝑛𝑜𝑑𝑒(𝑙 )) = 𝑐2(𝑙 ), Add 𝑙 to 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑠(𝑛𝑜𝑑𝑒(𝑙 ))

9 for each 𝑛′ ∈ 𝑆𝑢𝑐𝑐(𝑛𝑜𝑑𝑒(𝑙 )) do
10 if 𝑖𝑠𝐿𝑜𝑐𝑎𝑙 (𝑙 ) ∧ 𝐹𝑟𝑎𝑔(𝑛′

) == 𝐹𝑟𝑎𝑔(𝑛𝑜𝑑𝑒(𝑙 )) then
11 continue

// costs are saved in lexicographic order

12 for each edgeCost ∈ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝐶𝑏
[𝑛𝑜𝑑𝑒(𝑙 ), 𝑛′

]) do
13 𝑙 ′ := a new label with 𝑛𝑜𝑑𝑒(𝑙 ′) = 𝑛′

14 c(𝑙 ′) = c(𝑙 ) + edgeCost, 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑙 ′) := 𝑙

15 if 𝑐2(𝑙 ′) ≥ 𝑐2
𝑚𝑖𝑛

(𝑛𝑜𝑑𝑒(𝑙 ′)) then
16 break

17 𝑖𝑠𝐿𝑜𝑐𝑎𝑙 (𝑙 ′) := 𝐹𝑟𝑎𝑔(𝑛′
) == 𝐹𝑟𝑎𝑔(𝑛𝑜𝑑𝑒(𝑙 ))

18 Add 𝑙 ′ to𝑂𝑝𝑒𝑛

19 𝐵𝑃𝑃𝑉 (𝑛𝑠𝑡𝑎𝑟𝑡 ) := Creat PPV from 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑠

20 return BPPV

5 EXPERIMENTAL EVALUATION
5.1 Experiment Design
We validated the proposed methods with two types of analysis:

1) Comparative Analysis: To demonstrate the benefits of pre-

computation, we compared the online runtimes of our proposed

methods against two compute-on-demand methods that we con-

sider state-of-the-art. Additionally, we compared the precomputa-

tion times and online runtimes between MBOR-Basic and MBOR-

Adv to evaluate the effectiveness of our pruning techniques.

2) Sensitivity Analysis: We assessed the sensitivity of the pro-

posed methods to changes in the number of fragments.

Dataset: The dataset used was the 9th DIMACS Implementation

Challenge: Shortest Path [5], provided by the Center for Discrete

Mathematics and Theoretical Computer Science. This dataset com-

prises various real-world road network scenarios and is commonly

used as a benchmark dataset in related work (e.g., [11, 19]). We used

the San Francisco Bay Area (BAY) road network. The dataset pro-

vided two cost components: travel distance and time. To evaluate

the methods on different network sizes, we partitioned the entire

Bay Area into 5 fragments and randomly selected one fragment

to generate a 1/5 Bay Area road network. We generated 1/10, and

1/20 BAY Area networks similarly. Then, we randomly generated

50 queries on each network. Table 4 lists key statistics of networks

and the average number of solutions for the queries (i.e., the aver-

age size of the Pareto frontiers). The distribution of these queries

and their impact on performance is analyzed in Section 5.2. The

implementation of our methods is online available
2
.

Table 4: Statistics of the road networks. The number of bound-
ary nodes was calculated with a 50-fragment partitioning.

Road Network 1/20 BAY 1/10 BAY 1/5 BAY BAY

# nodes 15,366 32,205 64,684 321,270

# edges 41,180 76,230 156,682 800,172

# boundary nodes 876 696 873 1322

# boundary multi-graph edges 39,728 12,302 35,104 277,242

real size 804K 1.5M 3.2M 18M

# average solutions 15 13 47 119

5.2 Comparative Analysis
Baseline Methods: In order to make the evaluation results com-

parable, we only compared our proposed methods against other

exact algorithms of the bi-objective problem, i.e., those that, given

enough computational space and time, can find the set of all Pareto-

optimal paths. Thus, the two state-of-the-art methods tested were:

1) NAMOA*dr [19] and 2) Bi-objective A* (BOA*) [11]. Both meth-

ods are best-first bi-objective search algorithms inspired by the

A* search and have outperformed many other bi-objective routing

methods [11] (e.g. bi-objective Dijkstra [14, 20] and bi-directional

bi-objective Dijkstra [26]). We used the C implementations of these

algorithms provided in [11], after fixing memory leak issues.

Table 5: Average andmedian online runtime (inmilliseconds)
on 50 instances of various BAY networks.

Method

1/20 BAY 1/10 BAY 1/5 BAY Entire BAY

Avg Med Avg Med Avg Med Avg Med

NAMOA*dr 4.47 4.13 8.34 8.17 39.69 31.93 482.83 360.20

BOA* 4.34 4.02 8.56 8.31 27.99 20.43 343.05 221.69

Methods with Precomputation
MBOR-Basic 0.64 0.53 0.33 0.32 2.61 1.20 135.31 29.54

MBOR-Adv 0.38 0.30 0.19 0.18 1.93 0.70 86.84 4.56

Table 5 presents the average and median runtimes (in millisec-

onds) for 50 queries on various BAY network sizes. MBOR-Basic and

MBOR-Adv are under a 50-fragment partition. All four methods,

being exact algorithms, produced the same solutions. Table 5 shows

that the proposed methods with precomputation significantly out-

perform compute-on-demand methods in terms of online runtime,

achieving more than a 10× improvement for most metrics. Further

analysis sorted the queries by their average Pareto-optimal path

length, with the cumulative runtime visualized on the left y-axis

and the distribution of queries on the right y-axis in Figure 5. Simi-

larly, Figure 6 plots the cumulative runtime against the number of

candidate origin-destination boundary node pairs. One observation

is that, unlike compute-on-demand methods—whose performance

largely depends on the average Pareto-optimal path lengths—the

performance of MBORs is heavily influenced by the number of

candidate boundary node pairs enumerated during the online rout-

ing phase. Additionally, the network graph’s architecture impacts

the performance of MBORs. For instance, the 1/10 BAY network,

despite having approximately twice the size compared to the 1/20

BAY network, exhibited significantly faster average online runtimes

2
Our code: https://github.com/yang-mingzhou/MBOR

https://github.com/yang-mingzhou/MBOR
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(a) 1/20 BAY (b) 1/10 BAY (c) 1/5 BAY (d) Entire BAY
Figure 5: Cumulative runtime in seconds (line graph, left y-axis) vs. Average Pareto-optimal Path Length (x-axis) with Histogram
(right y-axis) on the 50 instances of various BAY networks.

(a) 1/20 BAY (b) 1/10 BAY (c) 1/5 BAY (d) Entire BAY
Figure 6: Cumulative runtime in seconds (line graph, left y-axis) vs. Number of candidate boundary node pairs (x-axis) with
Histogram (right y-axis) on the 50 instances of various BAY networks.

Figure 7: Average size of the Pareto-optimal superset (𝑃𝑂𝑠𝑢𝑝 )
retrieved for online routing in MBOR-Basic and MBOR-Adv.

in MBOR. This improvement is attributed to its more hierarchical

structure with fewer boundary nodes (696 compared to 876).

Table 5 shows that HBOR-Adv’s pruning technique significantly

reduced the online runtime compared to MBOR-Basic, achieving a

35.8% reduction in the average time across the entire BAY network.

This efficiency gain is corroborated by Figure 7, which shows a

much smaller Pareto-optimal superset retrieved for online routing

in MBOR-Adv. Finally, Figure 8 presents the precomputation times

for MBOR-Basic and MBOR-Adv. It is evident that the encoding

time for the boundary multigraph significantly contributes to the

precomputation time, and the proposed multi-edge pruning tech-

niques effectively reduce the precomputation time in MBOR-Adv.

5.3 Sensitivity Analysis
In the second phase of our experiments, we explored how the num-

ber of fragments affects the performance of the proposed methods.

We varied the number of fragments on the Entire BAY network

Figure 8: Precompuation time of MBOR-Basic and MBOR-
Adv on various BAY networks.

(a) Precomp. time vs. online run-
time (# fragments in parathesis).

(b) # Boundary nodes vs. # En-
coded boundary paths inMEPFV.

Figure 9: The impact of the number of fragments on the
proposed methods over the Entire BAY network.

from 50 to 150 and computed the precomputation and average
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online routing time. The results are shown in Figure 9a. This fig-

ure demonstrates that the proposed methods achieve an effective

balance between all-pair precomputation and purely compute-on-

demand approaches. Specifically, with only one fragment, all nodes

in the network are contained within the same fragment without

any boundary nodes, making MBOR equivalent to a compute-on-

demand method, as indicated by the y-intercept in Figure 9a. Al-

though precomputation time increases as the number of fragments

increases, the average online runtime decreases due to the larger

volume of information being precomputed and encoded. Also, the

precomputation time for MBOR-Adv increases more slowly than

for MBOR-Basic, thanks to its multi-edge pruning. If the number of

fragments equals the number of nodes in the network, our method

behaves similarly to an all-pair precomputation approach, where ev-

ery node becomes a boundary node. This scenario is hypothetically

represented at the x-intercepts. The increased precomputation time

with a higher number of fragments is attributable to the significant

rise in the number of encoded boundary Pareto-optimal paths in the

MEPFV. When the number of fragments was increased from 50 to

150 in the entire BAY network, the boundary node count (Figure 9b)

grew from 1,322 to 3,444, while the number of encoded boundary

Pareto-optimal paths surged from 1,747,684 to 11,861,136. Consid-

ering that the network comprises 321,270 nodes, this substantial

increase reinforces the impracticality of all-pair precomputation

due to the large number of Pareto-optimal paths to be precomputed.

6 CONCLUSION AND FUTUREWORK
The bi-objective routing problem aims to find the full Pareto-optimal

path sets for given origin-destination queries. In this work, we pro-

pose Multi-Level Bi-Objective Routing (MBOR) algorithms that

incorporate three novel ideas: boundary multigraph representation,

Pareto frontier encoding, and two-dimensional cost-interval based

pruning. Our experiments on real-world road network data show

that the proposed methods can significantly reduce the online run-

time compared to state-of-the-art methods. In future work, we aim

to extend our framework to multi-criteria routing scenarios. We

also plan to investigate efficient strategies for updating the MEPFV

in response to minor changes within the network.
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