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To develop better traffic prediction models, it is crucial to consider the spatiotemporal characteristics of traffic 

network and the effects of many external factors such as weather, land use patterns etc. A knowledge graph stores 

relationships among these external factors by turning data into machine-understandable information. It can 

accurately represent the correlations between heterogeneous external data sources and transportation network. 

However, integrating knowledge graphs and traffic networks is challenging due to the inherent heterogeneity of 

information present in external factors. To address this issue, this study introduces a traffic prediction model fused 

with a knowledge representation technique. A knowledge representation learning model called ‘TransE’ has been 

used to produce knowledge graph embeddings which are added with traffic features as inputs to several machine 

learning-based traffic prediction models. The models are trained over traffic data collected in Florida’s Seminole 

county from January to December 2019. Without knowledge graph embeddings, Random Forest model outperforms 

other prediction models with 𝑅2 value of 0.78 (RMSE=148.18). However, when knowledge graph embeddings are 

used as additional features, the 𝑅2 value of a Random Forest model increased to 0.85 (RMSE=120.67). Experimental 

results show that embedding knowledge graphs can significantly improve the accuracy of traffic prediction models.  
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1 INTRODUCTION 
Cities are getting more congested due to increasing urban development and vehicle demand on roads. Improving 

the efficiency of urban transportation by alleviating traffic congestions is an important problem. Intelligent 

transportation systems (ITS) technologies are utilizing artificial intelligence (AI) methods and big data coming 

from road sensors to enhance traffic prediction systems. Accurate prediction is beneficial for proactive decision 

making of urban traffic management and optimal traffic flows. Recent traffic prediction models use advanced 

computational techniques to integrate data from heterogeneous sources such as detector data, incident data, 

weather data, congestion reports etc. Accurate traffic prediction can benefit different stakeholders such as road 

users, policy makers, and traffic management agencies. It also helps to decrease travel time, increase road 

capacity, and enhance traffic efficiency [4]. 

Traffic states can be influenced by several external factors such as weather, incidents, holidays, special events, 

and land use etc. [7]. For example, point of interest (POI) can affect the surrounding traffic in a road network. A 

shopping mall or school can attract more vehicles in a certain period of a day. Weather condition also influences 

traffic flow propagation. Additionally, traffic congestion occurs due to a traffic incident such as a crash or a 

disabled vehicle. The influence of these factors on a network-level traffic prediction model is twofold as these 

factors can vary in temporal or spatial level. Furthermore, the traffic condition in two roads can vary significantly 

due to flow variations. Also, traffic flow in one road can be influenced by surrounding roads. As a result, the 

interdependency between these heterogeneous factors combinedly affect the traffic state of a road network [17]. 

It is challenging to incorporate the effect of heterogeneous sources in network-wide traffic prediction problem. 

Previous studies have used these external factors as additional input variables and ignore the interdependencies 

between traffic state and these external factors. Instead of using these external features as additional input 

features, a knowledge graph (KG) concept can be utilized to improve the traffic prediction model. KG can provide 

the relationship such as connectivity between different roads, association of roads and detectors, or association 

between roads and Point of Interest (POI) etc. One of the major advantages of KG concept is that it can handle data 

from multiple sources and provides output in different vector embeddings which can be added to the traffic 

prediction model. It can also explain the interaction between different components of a traffic network, which is 

not possible when different external factors are considered only as features in the model. Additionally, traditional 

data-driven models generate results that do not consider the semantic relationship among different segments of 

transportation networks and lack interpretation of the generated results. KG can address this issue as it can 

compute complex semantical relationships [13]. It can also provide information such as traffic situation analysis 

(which roads are congested in a certain period, traffic flow in surrounding roads), impact of traffic incidents on a 

location and adjacent neighboring roads etc. 

Traffic prediction models can be divided into two branches: simulation-based and data-driven approaches. 

Simulation models rely on several rules to predict traffic, but they are difficult to calibrate due to extensive data 

requirements and have limits in capturing real-time traffic dynamics [16]. Data-driven approaches overcome 

these limitations as they learn from the data by extracting traffic-related features and can enhance predictive 

accuracy [9]. Several studies have used external factors as additional features by concatenating with traffic 

features [2]. Researchers have included weather, holiday, POI, traffic incidents, event data, temperature data as 

additional features to their model [6]. Other researchers utilized knowledge representation learning (KRL) 

methods to generate vector embeddings that can capture semantics of different entities and their associated 

relationships. Zhu et al. [18] proposed a prediction model which integrates external factors such as POI and 
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weather data to predict traffic flow. Another study used adaptive fusion mechanism to predict future traffic flow 

via KRL [17]. Although these studies have showed the potential of knowledge graph, they didn’t use several 

entities of a transportation network. For example, these studies didn’t consider the influence of trip production or 

attraction values at traffic analysis zone (TAZ) level, and land use features at TAZ level in the knowledge 

representation. These external features can influence the traffic state of a network. For example, residential areas 

have high trip production and office areas have high trip attraction, which influences adjacent road network. Also, 

previous researchers didn’t include detector-specific information such as road to detector information or detector 

to detector information to their KG. By utilizing additional information of detectors’ relationship with their 

surrounding detectors and adjacent roads, the prediction model can benefit by learning how congestion can 

propagate at a localized level. This additional information can help model to understand the impact of sudden 

fluctuations of traffic flow caused by incidents or weather condition effectively. To address this issue, we have 

integrated several heterogeneous information such as TAZ- specific trip production/attraction values and land 

use features, road network data, connectivity between different spatial components of a traffic network in our 

knowledge graph. We also illustrate how to use KG to gain more insights of prediction results during traffic 

congestion via situation analysis as the KG can help us identify upstream and downstream locations of congestion 

area. It can also give insights on how congestion is impacting surrounding road networks of the affected location. 

As a result, we have shown the effectiveness of KG to improve the accuracy of traffic prediction models and how to 

use the knowledge graph to optimize large-scale network level traffic management system. This study contributes 

to literature in the following ways: 

• Integration of different heterogeneous information from traffic detectors, incidents, weather reports, land use, 

travel demand, and road networks to develop a knowledge graph and generate vector embeddings to represent 

the semantic relationships among different components. Previous studies didn’t consider TAZ-level features 

and spatial connections of detectors while constructing transportation knowledge graphs. 

• We evaluate the developed approach by using real-world data from a transportation network of varying 

capacity such as highways, arterials, and signalized intersections. Previous studies did not consider such 

complex transportation networks to generate KG embeddings. The results show that incorporating such 

complex network information in the KG enhances model’s performance. 

2 DATA DESCRIPTION 

2.1 Detector Data 

We selected Florida’s Seminole County as our study area and collected traffic detector data from January 1, 2019, 

to December 31, 2019. The study area contains different types of roads including Interstate highway (I-4), 

expressway (SR-417) and arterials (SR-17). We used Regional Integrated Transportation Information System 

(RITIS) platform for gathering traffic detector data for I-4 and surrounding arterials [19].  Additionally, the area 

contains several signalized streets that contain Automated Traffic Signal Performance Measures (ATSPM) 

detectors. After extracting traffic detector data, we selected total 262 detectors from available 498 detectors in 

the selected region (183 detectors from ATSPM data and 79 detectors from RITIS data). We filtered out 236 

detectors by data processing as they contained missing values, noises and outliers. The traffic detector data were 

processed for 15-minute intervals. The study area and selected detectors are illustrated in Figure 1.  



 

 

Figure 1: Selected detectors of the study area 

2.2 Traffic Incident Data 

We used traffic incident data downloaded from RITIS as additional features in our model. We considered only 

traffic crashes in this study and extracted 1912 crashes during the study period (January 2019 - December 2019). 

We used the start and end time of each crash and preprocess them to match with traffic detector data at 15-

minute intervals. 

2.3 Weather Data 

We used weather data and extracted five types of weather patterns during the study period [20]. The categories 

are cloudy, fair, foggy, light rain and heavy rain conditions. The weather data is also processed to match with each 

15-minute observation of the traffic detector data. 

2.4 Knowledge Graph Data 

To generate the knowledge graph of the selected transportation network, we need to create several relationships. 

First, we extracted TAZ information of the study area from the Central Florida Regional Planning Model and 

selected 208 TAZs in Seminole county. Then we extracted five land use features for each TAZ: area of residential, 

industrial, institutional, recreational, and retail area. We also collected total number of trips generated from a TAZ 

and number of trips attracted by a TAZ in 2019. We collected the road network information in the area. We used 

road name and associated geometry to generate relationships between roads and other roads/detectors. Finally, 

we generated the transportation knowledge graph of our study area which represents the following relationships: 

TAZ to TAZ adjacency, TAZ to associated land use features, TAZ to trip production/Attraction, TAZ to road (which 

TAZ contains a specific road section), road to road (which roads intersect with each other), road to detector (which 

detector falls into which road) and detector to detector (if two detectors are neighbor or adjacent to each other). 

By using all of these relationships, we generated a knowledge graph as shown in Figure 2. To generate the 

knowledge graph embeddings, we need to create triple to explain relationship between two entities in this way: 

(head, relation, tail). For example, we used following triples: (TAZ1, contains, Road 1), (Road 1, intersects, Road 2), 

(Road 3, has, Detector 6) etc. In total, we have 548 entities, 1247 unique relationships, and 7343 unique triples 

obtained from the knowledge graph. 



 

 

Figure 2: Schematics of the generated knowledge graph 

3 METHODOLOGY 

3.1 Knowledge Graph (KG) Representation 

KG is represented by nodes or entities, the associated relationships/edges between two entities, and each node or 

edge can contain respective attributes [15]. We used ‘Neo4j Desktop’ to generate the KG triples. This is a graph 

database management software that can be used to store nodes and edges of a graph along with their respective 

attributes. The generated graph of our study area by Neo4j desktop is shown in Figure 3. Different colors are used 

to represent various entities such as TAZs, roads, trip production/attraction, different land use features and 

detectors of the developed KG.  



 

 

Figure 3: Generated Knowledge Graph in Neo4j Desktop 

The study of extracting and using useful information from large-scale knowledge graphs for downstream 

prediction tasks is known as Knowledge Representation Learning (KRL) [8]. It can effectively represent 

underlying knowledge of the graph and efficiently maps implicit semantic information in graph structures to low-

dimensional Euclidean space, revealing previously hidden relationships between different entities [12]. The main 

objective of these representation models is to generate vector embeddings for each node or entity up to a certain 

dimension. In this study, we generated 16-dimensional embeddings from the KG for each detector. 

We used TransE [3], RotatE [10], DistMult [14], and ComplEx [11] models for generating the knowledge graph 

embedding. These models utilize the head (ℎ), relationship (𝑟), and tail (𝑡) information of each 7343 triples 

generated from the knowledge graph. A brief description of models’ formulation is provided below:  

3.1.1 TransE Model. 

It represents each relation consists of (ℎ, 𝑟, 𝑡) as a translation in vector space as shown below. 

ℎ + 𝑟 ≈ 𝑡 

3.1.2 RotatE Model. 

It treats each relation (ℎ, 𝑟, 𝑡) as movements in a vector embedding space. Unlike TransE, it treats relations as 

rotations in a complex space, rather than translations in a real space. Here, ○ is elementwise (Hadamard) product. 

ℎ ○ 𝑟 ≈ 𝑡 

3.1.3 DistMult Model. 

It generates vector embeddings in real space by considering entity and relation as a single real value vector and 

creates a generalized dot product of these three vectors (ℎ, 𝑟, 𝑡). Here, ℎ and  𝑟 are multiplied first, and the 

product (a scalar vector represents a transformed head) is multiplied with the 𝑡 vector. 

< ℎ, 𝑟, 𝑡 > 



 

3.1.4 ComplEx Model. 

It is an extension of the DistMult that uses complex vector space for embedding entity and relations. It generates 

two sets of embeddings (real and complex with same dimension), but the real part of the complex vector is used 

to generate embeddings as below. 

𝑅𝑒𝑎𝑙(< ℎ, 𝑟, 𝑡 >) 

3.2 Traffic Prediction Model 

We used following models in this study: linear regression, adaboost regression, decision tree (DT) regression, 

extreme gradient boosting (XGboost) regression, random forest (RF) regression and artificial neural network 

(ANN) regression models to predict traffic flow at 15-minute intervals. First, we checked each model’s 

performance without the knowledge graph. Then, we generate knowledge graph embeddings for each traffic 

detector via KRL. Then we merged them together with detector, weather and incident data via fusion block as 

shown in Figure 4. The model was trained on first 9 months (Jan.-Sept.) of data and tested on last 3 months’ (Oct.-

Dec.) data. We also maintained the temporal sequence of each detector in both training and testing data. The 

modeling framework is shown in Figure 4.  

 

Figure 4: Modeling framework for traffic flow prediction model 

3.3 Detector Data Processing 

The raw traffic detector data may contain noises and outliers. To fix this issue, we conducted a data cleaning 

process. We calculated the percentage of missing information for each detector and discarded those detectors 

having more than 30% missing data. Then we checked for capacity for each detector over 15-minute intervals. For 

RITIS, we selected 2200 vehicles as the maximum capacity of freeways [1]. For other signalized intersections, we 

fixed 525 vehicles as maximum capacity at 15-minute intervals [5]. Then we checked for outliers by using 

isolation forest, local outlier factor and interquartile range algorithms. Then, we applied multivariate iterative 

imputation methods to generate the final traffic flow data for the prediction model. The detector data processing 

steps conducted in this study are shown in Figure 5. 



 

 

Figure 5: Detector data processing steps 

4 RESULTS 

4.1 Knowledge Graph Embedding Evaluation 

After generating knowledge graph embeddings from different knowledge representation models, we compared 

their performances based on two evaluation metrics. The first metric is called hits @ n, which denotes how well a 

model ranks true (ℎ, 𝑟, 𝑡) triples among top n triples. For example, if a model can put a certain triple at rank 2, and 

another model puts the same triple at rank 5; then knowledge embeddings generated by the first model should be 

selected. 

Additionally, we used another metric named Mean Reciprocal Rank (MRR) which is the average reciprocal 

rank of all triples generated by the model. If a model achieves high MRR value, then it is performing better than 

other models. The equation of how to calculate MRR for all triples (𝑄) predicted by a model is shown below: 

𝑀𝑅𝑅 =  
1

𝑄
 ∑

1

𝑟𝑎𝑛𝑘𝑖

𝑄

𝑖=1

 

We compared model performance of TransE, RotatE, DistMult and ComplEx models for different hits @ n 

metrics. When we used hits@1 ranking, the TransE model performed better than other models. Later, we used 

hits@5 and hits@10 ranking, the performance of all models improved as we allow them to rank with more hits. In 

all scenarios, the TransE model outperformed other models and achieved 66% accuracy when hits@10 is used. 

The MRR value of the TransE model was higher than other models (around 0.36). As a result, we selected 

embeddings generated by the TransE model to further use in our traffic prediction model. Our findings also match 

with previous studies where translation-based knowledge representation technique was used only for traffic 

prediction [17,18]. We used other KRL techniques to check whether they can better capture the knowledge 

regarding spatial connectivity of a transportation network, but translational-based KRL technique (TransE) was 

found more suitable for the traffic prediction task.  Figure 6 illustrates the comparison among different knowledge 

graph representation models. 



 

 

Figure 6: Comparison over different Knowledge Graph embedding models 

4.2 Input Features 

We selected several features related to TAZ level associated with each detector. For instance, we used the 

frequency of a TAZ (number of occurrences in the dataset). If a TAZ has more frequency, it means that more traffic 

detectors are situated in that TAZ. So, the model will give more priority to that TAZ compared to another TAZ 

which has lower frequency. We also used five types of land use features and associated trip production/attraction 

values for each TAZ. We used road name where detectors are situated by replacing with each road’s frequency in 

the dataset. We also used several temporal features such as hour, day of the week, and weekend of the 

observation. Additionally, we used incident information (whether crashes occur or not) by assigning to the closest 

detector of the incident location. We used five types of weather conditions data by using their respective 

frequency. After the knowledge graph embedding was generated, we also used it as additional features. Finally, 

we used our target variable which is traffic flow (i.e. volume) at 15-minute intervals. Figure 7 illustrates the 

feature importance values generated by the Random Forest regression model. It can be seen that the embeddings 

generated by knowledge graph achieved high significance values. Top 10 significant features include 6 features 

that are obtained from the knowledge graph. The features used in this study are provided in Table. 1.  



 

 

Figure 7: Feature importance from Random Forest Regression 

Table 1: Features used in the traffic prediction model 

Feature Type Description    Feature Type Description 

 

 

 

TAZ Specific 

Features 

TAZ ID  

 Temporal Features 

Hour 

Residential Area Day of the week 

Industrial Area Weekend or not 

Institutional Area  Incident Binary (0, 1) 

Recreational Area  Weather Categorical (five weather categories) 

Retail/Office Area  Road Information Road Name 

Trip Production  Knowledge Graph Embeddings Generated from TransE model 

Trip Attraction  Target Variable Flow at 15-minute Interval 

4.3 Traffic Prediction Model Results  

We selected data from January 1, 2019 to September 30, 2019 as the training data, and we maintained temporal 

sequence of each detector for consistency. Then, we checked the model performances on remaining 3 months data 

by using several evaluation metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and 𝑅2 

value. Equations to calculate RMSE and MAE values are provided below respectively. Here, 𝐹𝑎𝑐𝑡𝑢𝑎𝑙,𝑖  denotes the 

actual traffic flow at timestep 𝑖, and 𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖  is the predicted traffic flow at timestep 𝑖. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝐹𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)

2
𝑁

𝑖=1

 

𝑀𝐴𝐸 =
1

𝑁
 ∑ |𝐹𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖|

𝑁

𝑖=1

 

The comparison of model performances is provided in Table 2. Without Knowledge Graph embeddings, the 

Random Forest regression model outperformed other regression models with a highest 𝑅2 of 0.78 and RMSE of 



 

148.18. When we incorporated the knowledge graph embeddings to the regression models, the Random Forest 

model’s RMSE value further reduced to 120.67 and 𝑅2 increased to 0.85. Apart from that, all models performed 

significantly better when the KG embeddings were included. The results indicate that KG captures semantic 

relationships among different spatial factors of the transportation network and increases prediction capabilities 

of all machine learning algorithms. 

Table 2: Comparison of model performances (min flow 5, max flow 1862, mean flow 352) 

Models 
Without KG With KG 

RMSE MAE 𝑅2 RMSE MAE 𝑅2 

Linear Regression 272.37 216.28 0.27 264.70 210.16 0.31 

Adaboost  263.46 207.30 0.31 258.73 204.89 0.34 

Decision Tree  209.71 149.77 0.56 203.02 147.19 0.59 

XGBoost  180.30 126.04 0.68 160.59 116.50 0.74 

ANN 159.91 102.92 0.75 125.63 76.24 0.84 

Random Forest  148.18 85.82 0.78 120.67 66.29 0.85 

4.4 Practical Application of the Knowledge Graph 

We can use knowledge graph to understand the impact of congestion in a network. For example, we can identify 

both upstream and downstream detectors of a specific detector where congestion occurs by running a query in 

the graph database in Neo4j and analyze the congestion situation in that road segment. After upstream and 

downstream detectors are detected via automated queries, we can use predicted traffic flows of those detectors to 

analyze future traffic condition of a specific road segment. Figure 8 (left) shows one upstream and one 

downstream detectors of a selected location obtained from the knowledge graph and the corresponding traffic 

volume predictions.  



 

 

Figure 8: Use of knowledge graph to identify one upstream and one downstream detectors of a selected 
detector in the same road section along with traffic predictions 

Similarly, knowledge graph can help analyze congestion patterns of a specific road and its adjacent road 

sections. Figure 9 shows two neighboring detectors that are situated in different roads obtained from automated 

knowledge graph queries and the corresponding traffic predictions. Here, KG enables us, in an automated way, to 

identify these neighboring detectors along with how congestion can propagate from one road to another road. 

Traffic managers can query the knowledge graph database to find alternative routes of a congestion location and 

then use predicted traffic flows of detectors placed in alternate routes to facilitate optimal traffic management 

strategies. 



 

 

Figure 9: Actual vs. predicted traffic for two neighboring detectors in different roads 

5 CONCLUSIONS 
In this study, we adopted a new concept of incorporating a knowledge graph to predict network-wide traffic 

volume. We combined heterogeneous data sources such as traffic detector, incident, weather, land use, and road 

network data to increase model’s performance by incorporating semantical relationships of different spatial 

factors of the transportation network into the prediction model. In the network, we used detectors placed in 

freeways, adjacent arterials, and signalized intersections and flow capacity of these detectors varied significantly. 

The model successfully understands the flow propagation at different roads with promising accuracy. A Random 

Forest model performed well with an 𝑅2 of 0.85 when knowledge graph embeddings were fused with input 

features. We also conducted situation analysis to demonstrate the utility of knowledge graph to analyze 

congestion pattern in the network. The proposed methodology has potential towards developing a generalizable 

traffic prediction model that can be applied over any transportation network. 

The study also has several limitations. More vehicles may travel through Seminole county due to tourist 

activity during summer, but our test dataset doesn’t have that seasonal variation. Also, we used categorical 

weather information. More enriched weather information such as temperature and precipitation can be used to 

understand the impact of weather on network-level traffic state. Furthermore, we used machine-learning 

algorithms for traffic prediction, but more sophisticated models such as long short-term memory (LSTM) model 

or graph neural network (GNN) can be used to check whether better predictive capabilities can be achieved.  
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