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ABSTRACT 

Emergency Response Vehicles (ERVs), such as firetrucks, 

ambulances, etc. operate with the purpose of saving lives and 

mitigating property damage.  As such, ERV travel-time reductions 

may result in significant benefits to the community. A common 

strategy to improve travel times is Emergency Vehicle Preemption 

(EVP). EVP seeks to reduce ERV delays by providing the right-of-

way to ERVs as they approach an intersection. This study proposes 

a new Dynamic Preemption strategy that determines the need for 

preemption prior to the ERV reaching the vicinity of the 

intersection, utilizing real-time data streams. This paper evaluates 

the effectiveness of some existing and proposed preempt control 

strategies using a digital twin testbed consisting of a series of 

signalized intersections on an urban arterial in Georgia.  

The best EVP strategy maximizes the improvement in ERV travel 

time while minimizing the adverse effect of preemption on the 

traffic in conflicting directions. Therefore, this study evaluates both 

the positive impact of EVP on the ERV as well as the adverse 

impact on the cross-street traffic. The study found that the potential 

exists for significant improvements in ERV travel time with the 

proposed Dynamic Preemption strategy, with minimal impact to 

the conflicting traffic. For the simulation corridor there was a 20% 

reduction in the ERV travel times with the implementation of the 

Dynamic Preemption strategy, compared to traditional EVP 

practices. 
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INTRODUCTION 

With recent efforts towards pilot testing and deployment of 

Connected Vehicle (CV) and V2X technologies [1, 2] there is a 

significant surge in the quantity and variety of data that is becoming 

available for feedback into real-time operations of transportation 

management systems, especially signal systems. Among the wide 

array of applications proposed for CV technology, advancement of 

Emergency-response Vehicle Preemption (EVP) is one that is ripe 

for implementation [3-5] as it targets a specific set of vehicles and 

does not require a substantial penetration of On-Board Units in the 

general traffic. This paper explores the potential of using real time 

data made feasible by CV technology, for the development of 

advanced strategies and algorithms for EVP.  

The reported benefits of EVP have been somewhat limited, 

especially in congested roadway conditions [4, 6, 7]. Most legacy 

systems are constrained by the line-of-sight requirement between 

the Emergency Response Vehicle (ERV) transmitter beacon and 

the preemption request receiver at the traffic signals. To address 

this constraint [8-11]CV technology provides a potentially 

seamless means to integrate live ERV vehicle position data, as well 

as the general traffic data and multiple intersections’ signal status 

data-streams. Such data enables enhanced strategies to optimize 

EVP performance, with the possibility of creating ERV route 

specific free-flow paths through multiple signalized intersections. 

By anticipating the arrival of the ERV, based on its position as 

recorded by CV messages received at other roadside units (RSUs) 

in the system or through a centralized cellular system, vehicles on 

the approach of interest may be cleared before the ERV arrives. 

While anticipatory route clearance-based methodologies have been 

proposed before [4, 12], and have seen limited implementation 

using GPS and cellular-phone based technologies, there is not 

sufficient literature on clear before-after evaluations of a distributed 

predictive EVP implementation, as presented in this effort. 

Research on the parameters, thresholds, etc., that govern currently 

available EVP implementations are also scarce. 

This paper provides a methodology for developing and studying a 

new Dynamic Preemption (DP) EVP strategy that utilizes the new 

data streams that could be made possible through the infusion of 

CV technologies into the traffic stream. In the presence of such 

high-quality real-time traffic data, efforts have sprung up all over 

the globe that have leveraged digital twins and CV data (e.g. 
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accurate vehicle trajectory, real-time signal information, etc.) to 

address traffic problems [13-16]. To mimic the capability of (1) a 

real-time traffic information extraction process, and (2) a feedback 

loop to implement changes in the traffic in real-time using the 

extracted traffic information, a digital twin is used in this paper. It 

is these characteristics that distinguish this approach from a 

traditional simulation. The digital twin acts as a surrogate for the 

field, enabling the implementation of different strategies on the 

network and evaluation of the key performance indices (KPIs) prior 

to field implementation. The real-time (i.e., wall clock time) data 

streams and feedback being drawn from the digital twin replicate a 

real-time field implementation. The paper illustrates the steps 

involved in the real-time data ingestion, development of the digital 

twin, and experimental design to evaluate the efficiency of the 

strategy under simulated field conditions. The study compares the 

proposed algorithm’s performance to a traditional check-in check-

out-based EVP strategy. Both the reduction in ERV travel-time as 

well as potential impacts on the non-ERV vehicles are considered 

in the evaluation.  The general assumption with most EVP studies 

is that the EVP strategy that minimizes emergency vehicle travel 

time should be selected. However, consideration should be given to 

the possibility that strategies with similar ERV performance may 

have different impacts on the general traffic. This study 

demonstrates the impact of two different strategies for returning the 

signal operations to normal operation after an EVP actuation. The 

traffic flow recovery process post EVP actuation is evaluated by 

measuring the effect of EVP on the travel times of mainline and 

cross-streets vehicles. 

 

BACKGROUND RESEARCH 

This section provides a brief introduction to EVP and as well as a 

summary of previous studies relevant to this research. Per MUTCD 

[17], traffic signal preemption is defined as the change in operation 

of a traffic signal from normal mode to a special control mode. The 

primary objective is to provide green indications along the path of 

a certain vehicle class, allowing for hindrance-free passage. 

Preemptive control can be given to trains, boats, ERVs, and light 

rail transit [18]. EVP is preemptive operation intended for ERVs, 

such as firetrucks, ambulances, etc. EVP provides right-of-way to 

the ERV, minimizing the delay in reaching the incident location 

and ensuring a safe and clear pathway for the ERV [19], [20]. The 

preemption triggering message can be conveyed to the signal 

cabinet through a multitude of methods; the vehicle/driver could 

externally relay the message (by use of strobe, siren, pushing 

buttons, etc.) or the infrastructure could be equipped to sense ERVs 

through pavement loops, radio transmission, or other vehicle to 

infrastructure (V2I) technologies [18].  

The preemption process involves two transition phases, one going 

into the preemption state, and the other coming out of preemption 

to restore normal signal operations. The Traffic Signal Timing 

Manual (STM) [18] states that, for both transitions, the yellow and 

all-red intervals shall not be shortened or omitted. While not 

covered in this background the STM includes additional transition 

guidance related to pedestrian timing constraints, returning to a red 

indication, allowable indication transitions, and accounting for 

multiple preemption requests.  

Several studies evaluating EVP considered the delays experienced 

by non-ERVs on opposing approaches in addition to potential ERV 

travel time reductions. [21] focuses on investigating the effect of 

preemption calls on closely spaced intersections. This case study 

was performed in a simulated environment by linking a model built 

in TSIS/CORSIM to the signal controllers using Hardware in the 

Loop Simulation (HILS) technology. Four intersections along SR-

26 in Lafayette, Indiana were simulated, incorporating seven 

potential preemption paths with one-to-three preemption calls on 

each path.  At each intersection, preemption calls were made at a 

predetermined fixed distance of the ERV from the stop-bar. Three 

algorithms were considered for the phase transition: smooth 

(lengthen or shorten local cycle by up to a select maximum 

percentage), add (local cycle may be lengthened only), and dwell 

(controller rests in coordinated phase). It was found that the smooth 

transition algorithm worked best in most cases, with the level of 

slack time in the cycle also an important factor. While studying the 

effect of ERVs, the study found that for both arterials and side 

streets, having a single preemption call in the simulation period had 

little to no effect on the overall travel time and delay. 

A study evaluating the disruption of coordinated signals, using 

microscopic simulation models based on multiple locations in New 

York City, observed that the EVP related disruption took a 

maximum of four signal cycles to recover [22]. Another study used 

MATLAB simulation to study the effectiveness of two different 

EVP control strategies. The study suggested the use of a predefined 

“notification time period,” designing an algorithm to minimize the 

ERV travel time while also minimizing the adverse effect of 

preemption on the side streets [23]. There were several other 

studies [24, 25] that explored this tradeoff as well, highlighting that 

ideally a balance needs to be maintained to manage delays for 

movements that conflict with the ERV path. Among the more 

recent EVP research efforts, [26] demonstrated the use of fuzzy 

logic to select the preemption phase and extend the green time, 

based on demand and queue length in a V2V and V2I environment. 

Other studies approached this problem from the network path 

perspective, as a route planning problem [27-29], where the vehicle 

responds to the state of the system rather than the system 

responding to the needs of the vehicle. While the opportunity for 

optimization is limited in a network where the demands are fairly 

balanced, there are opportunities for magnifying the impacts of 

each approach by adopting a combination of EVP and route 

optimization.    

The existing literature shows that it is imperative that a study of the 

impact of EVP account for non-ERV as well as ERV travel times. 

This paper demonstrates the evaluation of EVP strategies including 

the one developed in this study and other traditional strategies on a 

medium sized network (with 25 intersections) using preemption on 

8 contiguous intersections specifically focusing on EVP in a 

coordinated system.  
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STUDY DESCRIPTION 

This study proposes a new EVP strategy that dynamically adjusts 

the preemption trigger time to produce the maximum ERV delay 

reduction with the minimum disruption to other traffic. In the 

absence of real-world CV data in the study corridor, the study 

creates data streams in a simulated environment that replicate data 

streams that can be abstracted from CV data. Additionally, a 

simulation approach was chosen in favor of a before-after study 

given the advantages of rapid evaluation of multiple scenarios as 

facilitated by a simulation environment. The case study focuses on 

investigating preemption strategies during the PM peak hour, 

typically the most congested period for this corridor. This paper 

does not delve into the technicalities of CV implementation such as 

the range and accuracy of CV equipment, although additional 

information may be found in [30]. The following assumptions made 

in this study as it relates to CV infrastructure: 

• A sufficient penetration of CVs exist that would yield a 

reasonably accurate estimate of the queue lengths. Existing 

studies have established that such estimation is feasible [31-

34].  

• The ERV has an OBU that provides its GPS location in real 

time.  

• The path of the ERV is known. 

• The states of the signals are available in real time, and it is 

possible to push out phase change requests to the signal 

controllers.  

1    Study Site 
The digital twin simulation models a 6.2 mile stretch along the 

Peachtree Industrial Boulevard (PIB) corridor from Holcomb 

Bridge Rd at the south-west end to Pleasant Hill Rd on the north-

east end, in Norcross, Georgia. The model includes 25 intersections 

on and around PIB. The layout of the network in PTV VISSIM® 

[35], and the network extents in satellite view, are shown in Figure 

1 (a) & (b), respectively. For consistency in naming convention, 

PIB direction of travel is deemed to be North / South throughout 

the length of the corridor for the rest of this paper. The cross-street 

approaches are defined as Eastbound (EB) and Westbound (WB). 

For this model, the system entities, consisting of the network 

geometry and the signal-heads, were built based on satellite 

imagery from OpenStreetMap™ [36]. 

 
               (a)                                                         (b) 

Figure 1: Case Study Network of Peachtree Industrial 

Boulevard: (a) VISSIM® Simulation Model, (b) Satellite View 

by Google Maps™ [37]. 

 

2    Data Sources 

A pre-COVID pandemic time was chosen for the input data to 

ensure that the traffic and signal plans in the model represented 

typical traffic operations. Signal control data was based on a non-

holiday weekday: Tuesday, October 01, 2019. Signal plan 

information was obtained directly from the field controllers, 

representing the active plans. The signals along the corridor are 

semi-actuated coordinated, with a 160 second cycle.   

For simulation model calibration, a comprehensive volume study 

was not available for this corridor. Thus, for the major and minor 

road approach volumes, data was assimilated from multiple sources 

including short-term historical turn-volume count data, counts 

obtained from post-processing stop-bar presence detector 

activations, recent traffic studies on the corridor, available 

Automated Traffic Signal Performance Measures (ATSPM), etc. 

The signals on this corridor are also connected to a central server 

where the high-resolution signal phase and timing (SPaT) data, as 

well as detection data, is archived. The archived data had vehicle 

on-off pulse information corresponding to inductive loop detectors 

upstream of the stop-bar for the major road through lanes. The pulse 

data was post-processed to generate vehicle detection data for 

additional volume calibration. Finally, volume balancing and 

volume constraint computations based on signal cycle allowance 

and roadway geometry were used to generate estimates to fill 

volume gaps or inconsistencies in available data. 

DIGITAL TWIN MODEL 

The digital twin is constructed using PTV’s VISSIM® version 

2021 service pack 10 [35] microscopic simulation model. 

VISSIM®’s Ring Barrier Controller (RBC) add-on module was 

used to simulate the signal controllers and preemption strategies. 

The replicate runs are partially automated by using Python 3.7 [38] 

scripts to drive VISSIM® using its Component Object Model 

(COM) interface. For each simulation run the network is initially 

loaded with 50% of the target volume for the first 15 simulation 

minutes. Then the volume is raised to 100% for the next 75 

simulation minutes. Effectively, out of the total 90-minute runtime, 

the first 30 minutes are utilized for model initialization, and only 

the last 60 minutes are used for collecting data to generate 

performance metrics corresponding to the PM peak hour (5 pm to 

6 pm). In each simulation run, a single preemption event is modeled 

to ensure complete independence of the results related to each 

actuation.  

3    ERV Behavior 

Besides having a list of default vehicle types, VISSIM® enables 

the incorporation of external vehicle models that reflect operational 

characteristics unique to a given vehicle type.  One such model was 

used to create an ERV vehicle class, with specific features 

resembling a firetruck. The 3D model and characteristics were 

obtained from the VISSIM® website [39], and the max-speed and 

acceleration characteristics of the vehicle were selected to mimic a 

typical Heavy Goods Vehicle (HGV) in VISSIM®, as it was 
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observed that those mimic a standard firetruck the best. It must be 

mentioned that while that was a starting point for the choice of 

ERVs, this calibration process takes care of any possible future 

inconsistencies in driver behavior of the entire fleet, ERVs 

included. For this study, an ERV must pass through an intersection 

during a green, utilizing lanes in the correct direction of travel.  

That is, simulated ERV behavior does not allow for running a red 

or passing through the intersection in the lanes of the opposing 

traffic.  

4    Model Calibration & Validation 
Model calibration, i.e., adjusting model parameters to maximize the 

agreement of the model behavior to field observations [40], is an 

essential step to ensure that the model accurately represents the 

field. While fine-tuning the key parameters of the model to mimic 

real traffic in the network is necessary, it is not always possible to 

match the traffic vehicle-to-vehicle. Nor is such matching desirable 

as it may lead to overfitting the model, negatively affecting the 

robustness, translatability, and generalization of the results. In this 

study, the calibration effort ensured that the model sufficiently 

reflected the field conditions, considering both mid-block free flow 

speeds and saturation headways departing a signal. Validation tests 

with travel-time as the performance metric were performed to 

confirm the sufficiency of the calibration. Model calibration and 

validation processes are described in the following sections. A 

more in-depth discussion on each of these processes can be found 

in [30].  

4.1   Model Calibration 

As a first stage of calibration, speed collected from the GPS data 

for the corridor was used as the baseline and was compared to the 

speed distribution of the simulation corridor. To make the 

simulation speed comparable to the baseline, the distribution of 

“desired speed” parameter, which is an indicator of the free-flow 

speed of the network, was tweaked. This speed distribution was 

subjected to a deconvolution process to extract the data-points 

representing the free-flow speed in the network. A deconvolution 

process followed the methodology developed in a previous study 

[41] and allowed for the estimation of the free flow speed 

distribution, rather than a single free flow speed value. After the 

deconvolution process the corridor data points could be represented 

as a mixture of four Gaussian distributions. Of those distributions, 

the distribution with Mean: 52 mph, SD: 8 mph was chosen for the 

free flow speed distribution. This aligns well with the overall 85th 

percentile corridor speed of 51 mph. 

Another parameter crucial for model calibration, pertinent to this 

analysis, is saturation headways [42]. The detector data on the 

major intersections were extracted from MaxView™ [43] system’s 

database and that is used as the baseline. The headways in the 

simulation are controlled by modifying the multiplicative and 

additive factors in the Wiedemann 74 car-following model [44] for 

VISSIM®.  

Four random seeds of VISSIM simulation results were compared 

to four weekdays of field detector data. For example, as shown in 

Figure 2, approximately 1175 data-points per VISSIM simulation 

were compared to approximately 1400 data-points of field detector 

data at the NB approach of the PIB and Medlock Bridge Road 

intersection. The average headways (as depicted by the dotted 

vertical lines) for the field and VISSIM® after calibration lie very 

close to each other, in the 2.3-2.4 s range. The Cumulative 

Distribution Function (CDF) lines, shown as the orange and blue 

monotonically increasing lines, are also similar. A two-sample 

Kolmogorov Smirnov (KS) test, a non-parametric statistical 

hypothesis test, performed on the two distributions concluded that 

the null hypothesis “the headway data sets come from the same 

distribution” cannot be rejected at a 90 percent confidence level. 

The calibrated VISSIM® model has additive and multiplicative 

parts of the safety distance as 2.5 and 5.5 respectively (whereas the 

software defaults are 2 and 3 respectively). 

 

Figure 2: Calibration Results: Headway Distribution for 

Northbound (NB) Movement at PIB @ Medlock bridge Rd: 

MaxView vs VISSIM® [30] 

As a final calibration step, minor changes were made to the signal 

timing splits and vehicle extension timers at several intersections to 

better serve the synthesized traffic volumes.  

4.2   Model Validation 

For model validation, travel-time is the primary reported 

performance metric, although volumes were also confirmed to 

match expected field conditions. The traffic on the PIB corridor is 

directional with the PM peak traffic direction being north; 

additionally, the EVP study will focus on the NB direction of travel. 

While this discussion on validation using travel time is presented 

for   NB direction travel, a similar process was undertaken for the 

SB direction, finding acceptable travel time performance. 

Checkpoints were placed at two intermediate points on the NB PIB 

route to divide the corridor such that sufficient complete vehicle 

traces could be captured for each segment. The average travel time 

at the checkpoints were summed to determine a total average travel 

time for the entire 6.2 mile stretch of the NB-through route along 

the PIB. As a benchmark, weekday travel time data from (a) the 

Regional Integrated Transportation Information System [45] and 
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(b) Google Maps™ [37] [recorded at 5-min intervals during the 5-

6 PM period on July 16, 2021] were used. The average RITIS travel 

time was 960 seconds, while Google Maps travel time averaged 

825 seconds. The average travel time derived from the model was 

857 seconds. As per criteria set by Federal Highway Authority 

(FHWA)’s Traffic Analysis Toolbox [42], the simulated travel time 

should be within 15% of the field. The travel time in VISSIM lies 

within 15 percent of either of the data sources and satisfies the 

suggested validation criteria. 

5    Experiment Design 

Experiments were undertaken to study the impact of preemption on 

ERV and non-ERV (i.e., other vehicles in the network) 

performance. The experiments studied the impact of EVP during 

the PM peak, for an ERV with a NB route along the corridor. The 

EVP impact is evaluated with respect to the entry transition of the 

signal from normal to preemption operation. Two algorithms for 

entry transition into preemption are considered: 1) traditional 

check-in check-out (CI-CO) with a preempt trigger (i.e., ERV 

detector in the roadway) set a fixed distance from the intersection, 

and 2) a dynamic preemption call placement based on the required 

clearance time of the estimated number of vehicles between the 

ERV and the signal. Additionally, to ensure that the effect of the 

signal coordination, or rather the disruption thereof, is investigated 

in sufficient detail, the ERV route was chosen such that the ERV 

passed through multiple intersections along the coordination path. 

The field ERV GPS data collected as part of this effort was used to 

observe historical travel patterns and ensure that the path chosen 

was representative. The path chosen is shown in Figure 3 (a) and 

(b), as a series of historical GPS points, and as part of the model 

network in VISSIM®, respectively. It is worth mentioning that 

while this study is evidence to the effectiveness of discussed EVP 

algorithms, extending the experiments onto more diverse corridors 

would provide more robustness to the findings. 

 

                           (a)                                           (b) 

Figure 3: The Mainline Route chosen for the Study (a) Field 

ERV GPS data along the mainline overlaid on 

OpenStreetMap™ [36], (b) Mainline ERV Route Static 

Routing Decision in VISSIM® 

5.1   Experiment 1: ERV Entry Time 

The time at which an ERV makes a preemption request, relative to 

the local cycle and coordination plan, is likely to affect the impact 

of preemption on the traffic. In first set of experiments presented 

this effect is explored by introducing an ERV into the network at 

different simulation times, such that preemption calls are placed at 

different points in the signal cycle of the first intersection (PIB at 

Medlock Bridge Road) of the ERV route.   

5.2   Experiment 2: Entry Transition 

In the second experiment presented two entry transitions are tested, 

a traditional check-in check-out (CI-CO) preemption strategy (i.e., 

the preemption call is placed a fixed distance from the intersection) 

and a customized dynamic preemption (DP) strategy for an 

identical experimental setup in terms of arrival of the ERV into the 

network. For the traditional CI-CO setup, a check-in detector is 

placed a fixed distance from the intersection. When the ERV 

reaches the detector, a preemption call is placed. The call remains 

active until the vehicle crosses a check-out detector (or times out), 

which is generally placed immediately downstream of the 

intersection. One drawback of this setup is experienced when an 

ERV enters the back of a queue that extends past the check-in 

detector. In this situation, the preemption call is not placed until the 

queue is sufficiently processed that the ERV reaches the detector. 

Additionally, this method is insensitive to the number of vehicles 

queued between the ERV and intersection, likely resulting in 

inefficient performance.   

5.2.1  Dynamic Preemption 

To improve the performance of CI-CO preemption, this study 

leverages the potential of real-time field detection and ERV CV 

data, developing a DP algorithm. [46, 47] In this algorithm, it is 

assumed the ERV has a CV OBU. However, other traffic is not 

assumed to be CV, allowing for earlier field implementation of the 

proposed method.  In this algorithm, the queue-length on each 

approach of the ERV path is monitored. Based on the queue 

lengths, the time of the preemption trigger is set to ensure that the 

ERV traverses the intersection without (or with minimal) slow 

down. At each approach along the ERV route a sufficient time must 

be allocated to clear the vehicles in the queue, as well as those in 

between the end of the queue and the ERV, prior to the ERV arrival. 

Transition time must also be allocated for the signal controller to 

serve the current phase yellow, red-clearance, and any necessary 

in-progress pedestrian-walk phases. To account for field data 

limitations, a primary assumption for the algorithm is made that the 

number of vehicles in the approach queue is same as the number of 

moving vehicles between the back of the queue and the 

approaching ERV. While recognized as a rough approximation, this 

assumption accounts for current field data limitations to attain 

active counts of moving vehicles on the roadway. While it is 

possible within the simulation environment to determine the 

number of vehicles between the existing queue and the approaching 

ERV, utilizing this data would reduce the transferability of the 

method to the field. Current efforts are exploring improving this 

estimate using likely available field data. For instance, the queue 

length and the number of non-queued vehicles ahead of the ERV 

may be estimated based on real-time detector data from the current 

and upstream intersections, or from the location information in the 



IWCTS’24, October, 2024, Atlanta, Georgia USA S. Roy et al. 

 

 

 

Basic Safety Message from CVs (with sufficient penetration of 

CVs). However, this estimation is a non-trivial problem and has 

been studied by other researchers [32, 33]. It is not discussed in this 

study for brevity. In the proposed DP algorithm, a preemption 

decision may be made as early as when the ERV begins to approach 

the upstream intersection for the subject approach. Thus, it is 

assumed that the ERV route is known at least two intersections in 

advance. The preempt call time is calculated as follows.  

If “n” cars are present in the queue, assuming that the headway is 2 

seconds and an additional reaction time (i.e., start-up lost time) of 

4 seconds, the time taken to clear that queue would be (4+ 2*n) 

seconds. To clear the “n” vehicles between the end of the queue and 

the ERV, an additional 2*n seconds are taken.  For the transition 

from current signal state to the preempt phase, an additional 5 

seconds is added. This results in an overall total of (9+4n) seconds 

for the advance placement of the EVP call prior to the ERV 

reaching the intersection. Therefore, in a corridor with a free flow 

speed of “v” ft/sec, the preemption will be triggered by the ERV at 

(9+4n)*v feet from the intersection, when the intersection in 

question has a queue length of “n” cars.  The algorithm can be 

summarized by the flowchart in Figure 4.  

 

Figure 4:  Dynamic Preemption (DP) Algorithm 

Implementation Flowchart  

RESULTS 

Experiment 1 - Impact of ERV arrival-time It is expected that the 

time at which an ERV makes a preemption request, relative to the 

local cycle and coordination plan, is likely to affect the entry into 

and exit from preemption and thereby affect the impact of 

preemption on general traffic. As stated, this effect is explored by 

introducing an ERV into the network at different simulation times, 

resulting in ERV arrival times throughout the signal cycle of the 

first intersection (PIB at Medlock Bridge Road) in the route given 

in Figure 3 (a, b). For reflecting a cross section of arrival times, 32 

different scenarios are created, with successive five seconds 

increments in the time of introduction of the ERV into the network 

(fully covering the 160 second cycle). To account for stochastic 

variability, ten replicate runs per scenario are performed using ten 

random seeds. Thus, a total of 32*10=320 simulation runs were 

conducted in the study of ERV arrival time. For these runs, the DP 

algorithm is utilized.  

Throughout the travel time comparisons in this study, a hybrid 

boxplot is used (refer Figure 5). In the hybrid boxplot, for the 

replicate trials of each scenario (ten per scenario in this 

experiment), the red square dots represent the mean, and the top 

and bottom of the solid box represent the 75th percentile and 25th 

percentile, respectively. The difference between the 25th and 75th 

percentiles is the inter-quartile range (IQR). IQR represents the 

spread for the middle 50 percent of data-points around the median 

[48]. The black line drawn on the solid box is the median; the 

whiskers around the box span within 1.5*IQR of the box 

boundaries and the points that lie beyond the whiskers are outliers 

[49]. Figure 5 shows the effect of the staggered entries on the travel-

time (y-axis) of the ERV (traveling the length of the eight-

intersection route) with each box and whisker plot showing the 

travel time variability across the ten replicate runs for an ERV 

entering at the given simulation time (x-axis). The time of the 

entrance into the network, and thus time of the preempt call, relative 

to the local cycle is shown to have an impact on the ERV travel 

time, with the mean travel time across scenarios ranging from 438s 

to 470s, while IQR ranges from 27s to 89s.  

 

Figure 5: Impact of staggered ERV entry time on ERV Travel 

Time 

Figure 6 (a) & (b) show similar effects on the side-street through 

movement travel times at the first preemption-activated 

intersection of PIB at the Medlock Bridge Road intersection. The 

impact is measured from the preemption event to two cycles after 

the end of preempt. Mean side-street travel time for through 

moving vehicles ranged from 136s to 193s and from 124s to 174s 

on the EB and WB through movements, respectively. In addition, 

the IQR for travel time ranged from 72s to 127s and from 80s to 

144s on the EB and WB through movements, respectively. Given 

the range of variability seen for all movements in traffic (on both 

the main-line and the side-streets), all subsequent experiments 

include using a range of times for the infusion of the ERV into the 
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network, uniformly covering the cycle length of the signals of the 

corridor (i.e., 160s). 

 

                                                   (a)  

 

                                    (b) 

Figure 6: Variation in Travel Time for side-street through 

movement (PIB @ Medlock Bridge Road) for (a) EB Through 

and (b) WB Through with Different ERV Arrival Times. 

6    DP vs CI-CO 

As shown in Figure 3, the ERV used in this experiment enters at 

the Southern part of the network, upstream of PIB @ Tech Parkway 

South and travels NB through eight intersections, from the Medlock 

Bridge Road intersection to the Howell Ferry Road intersection, 

where it takes a right turn and leaves the corridor.  For a CI-CO 

setup, there are two significant potential drawbacks: 1) if the back 

of a queue extends past the check-in detector the ERV does not 

trigger the preemption call until it advances in the queue to the 

detector, and 2) the call is set at a fixed distance, without 

consideration of the real-time traffic conditions. Using the DP 

approach to determine when to place the call while the ERV is 

potentially further upstream avoids these issues, increasing the 

likelihood of a successful queue flush prior to the ERV arrival at 

the intersection box.  As with the prior experiment, there are 32 

runs of ERV network entry samples for each random seed, thus 320 

runs over 10 random seeds.  

The trajectory plots in Figure 7 provide a visualization of the 

difference between these methods.  The color in the ERV trajectory 

represents the GREEN/AMBER/RED signal state of the next 

downstream intersection at the corresponding time. The blue line 

running in parallel to the trajectory represents the timespan of an 

active preemption call by the ERV while traveling along its 

trajectory. Figure 7 (a) and (b) present an example scenario, 

comparing an ERV entry into the network at the same simulated 

time, for CI-CO and DP, respectively. Figure 6 (a) has preemption 

enabled with a CI-CO implementation, where the detector is placed 

on an approach 1000 ft upstream of the intersection or, where 

1000ft is not available, immediately after the upstream intersection. 

Figure 7 (b), with the same entry time as Figure 7 (a), depicts the 

ERV trajectory using DP to place preemption calls. Within this 

example the drawback of CI-CO is evident, particularly at closely 

spaced intersections. In the CI-CO strategy the ERV is unable to 

place the call sufficiently early to allow for the queue to clear, 

instead of being delayed in the queue while the downstream 

vehicles clear. The DP approach can clear the queue more 

consistently prior to the ERV arrival, resulting in a significant 

reduction in delay.  

 

                                                          (a) 
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                                                         (b)  

Figure 7: ERV Trajectory in the PIB VISSIM® network: 

preemption enabled: (a) CI-CO, (b) DP 

The impact of this difference in preempt methods may also be seen 

in the impact to ERV and non-ERV travel times, Figure 7.   For the 

ERV travel time, Figure 7(a), averaged across all arrival times, the 

CI-CO provides an approximately 73s advantage over no-preempt 

while DP provides a 142s advantage. The difference in the ERV 

travel time between Preempt disabled and CI-CO, as well as 

between CI-CO and DP, were found to be statistically significant, 

based on a non-parametric one-way ANOVA H-test, Kruskal 

Wallis (KW) [50] at 5% significance level. This comparison 

provides a strong demonstration of the advantages of an approach, 

such as DP, leveraging CV data.  

When considering the impact on the side-streets as reflected by 

Figure 8 (b) within the first two signal cycle lengths after the 

preemption activity, it is seen that the effects on side street traffic 

was comparable, with the average travel time being 107s, 130s and 

131s for “no preempt”, CI-CO, and DP respectively. The difference 

between CI-CO and DP travel-times were found to be statistically 

insignificant using the KW-test. Similar trends are observed for 

other intersections as well. Hence the overall gain in ERV response 

time with negligible excess side-street traffic delay provides a 

strong argument for preempt in general, as well as seeking 

advanced CV based preempt methods.   

 

(a) 

 

(b) 

Figure 8: Overall travel time under three entry-transition 

experimental setups: (1) Preempt Disabled, (2) Check-in 

Check-out, (3) Dynamic Preemption for (a) (top) ERV through 

the designated route; (b) Non-ERVs at PIB @ Highwoods 

Center WB-Through for 2 signal cycles after EVP activity. 

7    Real-time Feasibility of the Runs 

For in-field implementation of the developed algorithm, it must be 

ensured that the system may execute at a real-time pace. Hence, an 

experiment investigating the real-time feasibility of the system was 

performed. In this experiment the simulation timestamps are 

tracked alongside the wall clock time, during the time the DP 

algorithm is active in the run. The experiment is repeated with ten 

random seeds, and all the runs are made on a single machine the 

following specifications: Intel® Core ™ i7-7700 CPU @ 3.60GHz 

and 16GB of RAM. A fair experimental setup for testing the real-

time usability of the system would be to implement a Software in 

the Loop Simulation (SILS) architecture. This enhances the 

understanding of how the simulated EVP strategies could be 

implemented on a real-field controller common in engineering 

practices all over the state of Georgia.  

For this experiment, Intelight’s MaxView® Advanced Traffic 

Management System (ATMS) software [51] was used. A subset of 

the signalized intersections is run externally using the MaxTime® 

signal software. This process runs individual signalized 

intersections each using independent processing units. Hence, this 

architecture takes significantly slower to run compared to the in-

built VISSIM® controllers. Hence the SILS system keeping up 

with real time, despite having this barrier of computational load 

created by the multi-threading provides stronger evidence for 

successful implementation of the digital twin in the near future. 

The SILS model runs at 5X and 4X real-time speed without and 

with the DP algorithm running in the background. This is clearly 

fast enough to maintain a system that needs to run on a second-by-

second feedback system. Hence, the EVP digital twin model proves 

to be capable of real-time information flow under a multitude of 

computational loads. 

CONCLUSION & FUTURE WORK 

This study demonstrates the positive effects of EVP combined with 

CV and V2X technology by implementing a DP architecture in a 

microscopic simulation model, using travel time as the primary 

metric, under a digital twin framework. For the case studied, DP 

with either exit transition led to an approximate 23% (~140s) 
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reduction in average travel time for the ERV. While not as 

significant, it was seen that traditional CI-CO also had the potential 

to improve ERV travel time, with approximately half the benefit 

seen in DP. When considering the side-street, it was observed there 

is a disruption in travel behavior on the side streets, leading to 

increased cross street travel time with preemption. However, both 

the DP and CI-CO had similar impacts.  

It is recognized that the percentage improvements or degradation in 

travel time are not directly transferrable to other corridors, with 

each corridor, given its unique characteristics and demands, 

requiring its own analysis. However, this study, along with others 

in the literature, demonstrates the potential benefits of emergency 

vehicle preemption strategies and critically the potential for 

additional benefits that may be gained through a CV 

implementation. Several improvements could be made to the 

experiment design that could provide for a more robust study in 

future. First, rather than choosing a mainline ERV route, the route 

could be a mix of the main and side-streets. Second, scenarios with 

arrival of multiple ERVs at an intersection should be explored to 

understand the interaction of overlapping preemption request calls. 

Third, there have been several studies tackling path planning 

problems for EVP [27-29]. Since it was known a prior that the ERV 

will only be traveling on the mainline utilizing a designated route, 

this is not included in the current experimental architecture. Fourth, 

the comparative analysis of EVP could have been extended beyond 

just travel time to additional metrics such as average queue-length, 

cycle failures on the cross streets, etc. to provide more depth to the 

findings. Fifth, the interaction between multiple ERVs leading to 

concurrent EVP calls need to be studied for algorithm sensitivity 

and is being studied in a follow-up study. Sixth, while successful, 

the DP algorithm developed is a simple heuristic. Additional 

refinement of the algorithm is merited. For example, an EVP 

calling algorithm could be developed that uses available real-time 

traffic metrics combined with novel Machine Learning techniques. 

Efforts are being made in this direction. Seventh, the algorithm 

needs to be tested on real-world pilot projects to demonstrate the 

reliability of the underlying algorithms. Lastly, KPIs besides travel 

time such as emissions, fuel consumptions, etc. could be used for 

the effectiveness of EVP. 
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