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Abstract
Since flight delay hurts passengers, airlines, and airports, its pre-
diction becomes crucial for the decision-making of all stakeholders
in the aviation industry and thus has been attempted by various
previous research. However, previous delay predictions are often
categorical and at a highly aggregated level. To improve that, this
study proposes to apply the novel Temporal Fusion Transformer
model and predict numerical airport arrival delays at quarter hour
level for U.S. top 30 airports. Inputs to our model include airport
demand and capacity forecasts, historic airport operation efficiency
information, airport wind and visibility conditions, as well as en-
route weather and traffic conditions. The results show that our
model achieves satisfactory performance measured by small predic-
tion errors on the test set. In addition, the interpretability analysis
of the model outputs identifies the important input factors for delay
prediction.
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1 Introduction
The aviation industry, despite experiencing a significant downturn
in air traffic demand during the global pandemic, is now on a path
to recovery. Projections indicate an annual growth in traffic of 1.5%
to 3.8% over the next two decades [6]. Such growth, while promis-
ing, forecasts a burgeoning gap between demand and capacity at
airports, potentially exacerbating flight delays — an outcome that
significantly impacts passenger satisfaction, airline operating costs
[14], and environmental sustainability [12].

To mitigate these challenges, it is increasingly vital for aviation
authorities to develop robust mechanisms for predicting flight de-
lays and to establish more efficient traffic management initiatives
(TMIs). The literature is replete with studies aimed at forecasting
flight delays using a variety of methodologies ([10, 11, 13]). One of
the seminal works in this field by ([7]) employed deep learning tech-
niques, specifically the Long Short Term Memory (LSTM) model,
to analyze day-to-day sequences of departure and arrival delays
at a single airport, successfully predicting delay classes based on
predefined thresholds. Another noteworthy study by ([15]) utilized
the LSTM model to predict aggregated daily delays for 123 U.S.
airports, incorporating Monte Carlo Dropout techniques to refine
parameter variance estimates. However, most existing studies in
flight delay prediction focus on binary outcomes (delayed or not)
or on categorizing delays into broad classes. Furthermore, these
predictions often pertain to highly aggregated levels, such as daily
delay forecasts.

Building on recent advancements, a cutting-edge study ([16])
demonstrated the application of transformers to predict airport
delays at the quarter-hour level across several regional airports. This
has paved the way for the adoption of more sophisticated models
capable of tackling aviation challenges with greater precision.

In this paper, we propose a novel approach to predict the spe-
cific numerical values of airport arrival delays at a more granular
level—specifically, every quarter-hour over a strategic horizon of
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up to four hours. We focus on the top 30 U.S. airports, incorporating
variables such as airport demand and capacity forecasts, historical
operational efficiency, and local weather conditions. To achieve
this, we will deploy the Temporal Fusion Transformer (TFT), an
attention-based deep neural network model designed for multi-
horizon forecasting. The TFT model has demonstrated superior per-
formance over other forecasting techniques like DeepAR, ARIMA,
and traditional LSTM Seq2Seq across various datasets ([1]), validat-
ing its effectiveness for time-series data analysis.

The paper is structured as follows: Section 2 provides an overview
of the datasets utilized and the preprocessing of input variables.
Section 3 delves into the modeling details, while Section 4 presents
and discusses the results. We conclude our study in Section 5 with
a summary of our findings and insights.

2 Data
For this study, we focused on the top 30 busiest airports in the U.S.
during the year 2016, spanning from January 1st to December 31st.
To conduct a comprehensive analysis, we collected and integrated
three key datasets from the Federal Aviation Administration’s (FAA)
Aviation System Performance Metrics (ASPM) and the Integrated
Surface Database (ISD). Prior to integration, each dataset under-
went rigorous cleaning, filtering, and time zone normalization to
UTC to ensure data consistency and accuracy. The resulting master
database is structured on a quarter-hourly basis for each airport,
amounting to a total of 1,054,080 data points (30 airports × 366 days
× 24 hours per day × 4 quarters per hour).

The datasets utilized include:
(1) FAA ASPM Flight Level Data: This dataset provides de-

tailed records for each flight, including flight plans, sched-
uled and actual times, and Estimated Departure Clearance
Time (EDCT) for flights arriving at 77 major U.S. airports. It
serves as a crucial source for analyzing flight-specific delay
patterns and operational efficiency.

(2) FAA ASPM Airport Quarter-Hour Data: Contains com-
prehensive data on operational conditions at 15-minute inter-
vals. This dataset includes information on airport capacity,
runway configurations, and terminal weather conditions,
essential for understanding the operational dynamics that
influence flight delays at the airport level.

(3) Global Hourly – Integrated Surface Database (ISD):
Comprises hourly weather records from 2,330 surface sta-
tions across the U.S., providing extensive meteorological
data crucial for correlating weather conditions with flight
delays. The details of the stations and their data coverage
are documented in Appendix 1(c).

This robust integration of flight, airport operational, and weather
data provides a solid foundation for developing predictive models
aimed at forecasting airport delays with high precision. By harness-
ing detailed historical data, our approach seeks to uncover nuanced
relationships between airport operations and delay occurrences,
enabling more accurate and timely predictions that could signif-
icantly enhance traffic management and operational planning at
major U.S. airports.

This section outlines the input variables for airport-level delay
prediction and describes their processing from raw datasets. The

primary data sources are from the FAA’s ASPM airport quarter-hour
dataset. Inputs include:

Airport ID: Captures systematic variations in trafficmanagement
efficiency and congestion at different airports. Time Index, Month,
Local Hour, and Day of the Week: Helps capture general traffic vol-
ume and flight operation patterns. Scheduled Flight Departure and
Arrival Counts: Set 2-6 months in advance of the actual flight day.
Airport Capacity Forecasts for Departures and Arrivals: Predictive
data on expected airport throughput. Observed Airport Arrival and
Departure Throughput: Actual counts of flights handled by the air-
port. Observed Airport Demand: The number of flights scheduled to
arrive and depart. On-Time Percentage for Arrivals and Departures:
Statistics on the punctuality of flights. Average Arrival/Departure
Delays: Prediction variable, smoothed by moving average over adja-
cent three quarter hours to mitigate extreme values. Additionally, to
assess congestion effects, we calculate cumulative queuing delays
for arrivals and departures using a deterministic queuing model.
This model operates with quarter-hour intervals, counting demand
based on scheduled ’wheels-on’ times and throughput based on
actual ’wheels-on’ times. If a flight lands earlier than scheduled, it
is only counted in the earlier interval. We then compute the cumu-
lative actual arrivals and demands for each quarter-hour, where the
area between the arrival and demand curves indicates total queuing
delays for that day.

For operational variables, we include:
• Enroute Traffic Density: This considers the traffic managed
by terminal air traffic controllers, who are responsible for air-
craft entering and exiting the airport and ensuring safe sepa-
ration over the busy surrounding airspace. The U.S. airspace
is divided into 0.25° cells, extending from 25°N to 50°N lat-
itude and 66°W to 125°W longitude. Using distance-based
interpolation along the great circle route, we track en-route
locations at quarter-hour intervals, aggregating traffic den-
sity across the grid. An example of this grid system is shown
in Appendix 1(a)(b).

• Convective Weather Factors: Thunderstorms, crosswinds,
tailwinds, ceiling, and visibility at airports are considered.
Thunderstorms, in particular, can drastically reduce airport
capacity.We resample weather data hourly and apply 2D grid
interpolation to assign weights to grid cells for convective
weather, creating hourly weather matrices for the airspace
grid (see [12] for detailed feature engineering), as displayed
in Appendix 1(d).

This detailed input processing approach allows for a nuanced un-
derstanding of factors influencing airport delays, ensuring our pre-
dictive models are both comprehensive and precise.

3 Modeling
3.1 Temporal Fusion Transformer
Temporal Fusion Transformer (TFT) is an attention-based architec-
ture which combines high-performance multi-horizon forecasting
with interpretable insights into temporal dynamics, first proposed
by [8]. It integrates the mechanisms of several other neural ar-
chitectures we learned in class, for instance LSTM layers and the
attention heads used in Transformers. The major components of
TFT include gating mechanisms, variable selection networks, static
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Figure 1: Left TFT Architecture ([8]; Right:Illustration of multi-horizon forecasting([8])

covariate encoders, temporal processing, and prediction intervals
via quantile forecasts. Details can be found in [8] and the general
architecture is shown in Fig. 2.

Compared with the classic transformer model, it has several ad-
vantages and novelties, which makes it a good fit for our work. First,
the input features to TFT can be of three types: i) temporal data
with known inputs into the future, e.g., the future airport demands;
ii) temporal data known only up to the present, e.g., the histori-
cal airport delays; and iii) exogenous categorical/static variables,
also known as time-invariant features, e.g. airport IDs. Second, it
supports multi-step predictions. This characteristic facilitate our
prediction of airport arrival delays for different quarter hours in the
future. Furthermore, TFT also outputs prediction intervals, by using
the quantile loss function. Therefore, TFT can provide range esti-
mates rather than a single point estimate, which will offer air traffic
controllers more information when they are making decisions. In
addition, TFT has good interpretability, which can help identify the
key contributions to airport delays. Together with its advantages in
high performance and available open source implementations, all
these strengths makes it a preferrable model for us to implement
delay prediction.

3.2 Problem Formulation
The goal of this study is to predict arrival delays for the U.S. Top
30 airports over a strategic time horizon. In a generic form, it can
be formulated as a multi-variate, multi-step, time series forecasting
problem. Here we determined the time lag variable, or the look-back
time of what has happened as 2 hours, or 8 time steps (since our
data is in quarter hours); and the maximum look-ahead time as 4
hours, or 16 time steps, which is determined by the data updating
frequency as well as prediction needs. Fig. 2 further illustrates the
relationship of inputs and outputs in a given time horizon. The
inputs and the outputs of our TFT model are prepared from the
sources specified in Section 2. Table 1 lists the detailed inputs to
TFT for delay prediction.

With these inputs, we use the TemporalFusionTransformermodel
given by PyTorch Forecasting package to train our flight delay fore-
cast model. The model is trained and validated on the first eleven
and a half months and the last 15 days of the year are set aside as

Table 1: Input Variables Description

Variable Types Variables

Static Covariates Airport ID, Month, Local hour, Day of the week

Past-Observed Inputs Actual arrival and departure counts; Reported
number of aircraft intending to arrive and depart;
Average arrival delays (based on flight plan) and
departure delays; Arrival and departure on-time
percentage statistics; Cumulative arrival and de-
parture queuing delays

Apriori-Known Inputs Scheduled quarter-hourly arrival and departure
demand; Quarter-hourly airport arrival and de-
parture capacity; Airport visibility and ceiling
conditions; Airport headwind and tailwind condi-
tions; Enroute convectiveweather; Enroute traffic
densities

test set. The hyperparameters are finely tuned, including but not
limited to size of the hidden layers, dropout rate, attention head
size, and learning rate; and the parameters are learned.

4 Results
4.1 Delay Prediction Results
Fig. 2 shows the model performance for the 30 airports on the test-
ing dataset of the last 15 days of 2016, measured by mean absolute
error(MAE). The performance of the model varies among differ-
ent airports, with MAE ranging from 5 minutes to 12 minutes. In
general, airports with higher delays have a higher MAE.

To understand the temporal differences of the prediction perfor-
mance, Fig. 3 show the prediction results of arrival delays at SFO
for selected testing days. The comparison of actual (blue line) with
predicted (orange line) values demonstrates that the TFT model
can capture most upward and downward trends of delays.

However, the model still does not make predictions that match
the ground truth perfectly. Possible causes are also examined. First,
although we have moved average the delay data, it still has a huge
variation within adjacent quarter hours. This unsmoothness char-
acteristic of the target variable makes it difficult to predict. Second,
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Figure 2: Model Performance for 30 Airports Measured by MAE(min)

Figure 3: Model prediction of arrival delays(min) at SFO for selected testing days

Figure 4: Attention score by time index

this study applies the model to all U.S. core 30 airports while the
different airports may be influenced by the inputs differently. For
example, SFO may be more impacted by bad weathers than LAX is,

which problem, however, cannot be handled by the setting of this
model. Third, there are other factors influencing flight delays that
are not captured by the dataset we collect. For example, we do not
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Figure 5: (Left) Encoder; (Right) Decoder

have access to traffic management data like Ground Delay Program
implementation or Airspace Flow Program implementation, which
can better capture the traffic impact of other airports and enroute
airspace on the study airport. Last but not least, the training and
test dataset may not be of the same distribution. The second half
of December (test set) is likely to have more severe weather days
than the rest of the year. Due to the imbalanced nature of the data,
the model would perform better (in terms of error minimization)
on the non-severe weather days.

4.2 Model Interpretation
TFT has an advantage in interpretability of time dynamics. For
example, Fig. 4 shows the attention score of each time index. A
higher attention score means a bigger contribution from that time
step to the prediction outputs. Since the look-back time of our
model is set to 2 hours, or 8 time steps, the time indices are from -8

to -1. As expected, the closer time steps receive higher scores and
thus make a bigger contribution.

Furthermore, the TFT model is also interpretable in terms of the
importance of each input variable for the response variables. Based
on Fig. 5, the relative importance of the input variables for delay
prediction can be identified. For the encoder inputs, historic arrival
delays and arrival counts are top 2 factors. For the decoder input
variables, scheduled arrival demands, enroute traffic density, local
hour, enroute convective weather are influential factors.

5 Conclusion
In this study, we applied Temporal Fusion Transformer models to
the prediction of average flight arrival delay of U.S. core 30 airports
at quarter hour interval with the maximum look-ahead time as 4
hours(or 16 time steps). The inputs of model comes from a wide
range of data and are processed to involve the information of airport
operation conditions (capacity, schedule flights, demand), terminal
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and nearby enroute congestion level, airport weather conditions
and nearby enroute thunderstorm. The TFT model handle well with
these heterogeneous inputs. The performance of the model, though
varies among airports, is acceptable in that it captures most up-
ward and downward trends of delays. Future research could focus
on enhancing the processing of convective weather information,
incorporating enroute wind conditions, and, most importantly, inte-
grating TrafficManagement Initiatives (TMIs), such as miles-in-trail
[9] and the ground delay program. Furthermore, future work could
explore the integration of platooning [4], electrification [2, 5], and
queueing systems [3] in aviation applications.
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