
OSM Ticket to Ride
Wenzel Friedsam

University of Innsbruck
Innsbruck, Austria

wenzel.friedsam@student.uibk.ac.at

Tobias Rupp
University of Stuttgart
Stuttgart, Germany

rupp@fmi.uni-stuttgart.de

Figure 1: Resulting game graph of the United States using our algorithm.

ABSTRACT
Board games such as Ticket to Ride by Days of Wonder use game
boards which are based on real geographic data. In this particular
game, the map represents an abstract railway graph. Generating
such maps by hand is a time consuming process. Therefore we
present an algorithm that can generate maps for Ticket to Ride
using OpenStreetMap data as input. The result can be imported in
an open source web version of Ticket to Ride, which allows players
to play on the generated map.

CCS CONCEPTS
• Applied computing→ Cartography; Computer games.

KEYWORDS
OpenStreetMap, railway network, map generation, board games
ACM Reference Format:
Wenzel Friedsam and Tobias Rupp. 2024. OSM Ticket to Ride. In 17th ACM
SIGSPATIAL InternationalWorkshop on Computational Transportation Science
GenAI and Smart Mobility Session (IWCTS’24), October 29-November 1, 2024,
Atlanta, GA, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3681772.3698211

1 INTRODUCTION
Board games often feature abstract maps which are based on real
geographic data. One example is Ticket to Ride (TTR), a board game
for two up to five players designed by Alan R. Moon and published
by Days of Wonder in 2004. The game is quite popular with several

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IWCTS’24, October 29-November 1, 2024, Atlanta, GA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1151-0/24/10.
https://doi.org/10.1145/3681772.3698211

million copies sold and won various awards including the German
“Spiel des Jahres” award. The map represents an abstract railway
graph of North America, containing a set of train stations which
are connected by railway routes. The goal of the game is to earn
points by placing train cars on these routes to complete destination
card tasks. Each destination card specifies two cities on the map
that must to be connected through built routes. In general, there are
several possible paths to achieve this, but not all are equal efficient.
The challenge of the game is to build the required routes in time
before they are occupied by other players.

Generally, board game maps are planned and created by hand,
which can take a lot of time. At the present time, where many
tasks can be automated with current hardware and software, the
question arises whether the creation of such playable maps can also
be automated.We created an application that can generate new TTR
maps based on the freely available geodata from OpenStreetMap
(OSM) [1].

In the following, we describe the original game and its existing
open source version. Then we formalize our quality criteria for the
map generation and outline our implementation.

1.1 Related Work
There are already existing projects using OSM data to generate
game maps for board games. One example [5] is a tool to autom-
atize the map generation process for the game RISK by Hasbro.
Geographic administrative boundaries from OSM are extracted,
compressed and processed to generate a map for the game, a col-
lection of territories. To make it playable, a neighborship graph
representing the adjacencies of territories and a hierarchy to form
groups of territories are generated.

In [4], new maps for TTR are generated based on geographical
data in so far that they pick real world cities as city nodes for their
boards by hand. However, their connections between cities are
rather unrealistic since they are generated by a genetic algorithm
not taking real geographical data into account.

https://doi.org/10.1145/3681772.3698211
https://doi.org/10.1145/3681772.3698211
https://doi.org/10.1145/3681772.3698211

IWCTS’24, October 29-November 1, 2024, Atlanta, GA, USA Friedsam et al.

In [7], artificial intelligence is used to generate TTR maps. Their
focus is to make the game more enjoyable by evening out winning
chances. They modify a random graph generated using a set of
rules or the original TTR board by changing certain parameters
like the length of routes. While this approach is also an example
for automatically generated TTR maps, the graph is not based on
any geographic data.

In our approach we focus on generating maps based on the real
railway network while keeping the graph as similar as possible to
the original game graph in terms of relevant game metrics.

2 TICKET TO RIDE
There are different variants of the game with slightly adapted con-
tent and rules, for the sake of simplicity we only refer to the original
version and its game rules [6] in this paper.

The game map consists of 36 different cities which are connected
by routes (edges). Each route has a defined length in segments and
a color. Some routes are double-routes and can have two different
colors. Each route can be claimed by one player. Train car cards can
be spent to claim a route. At the beginning of the game, each player
receives three destination tickets. Each destination ticket lists two
cities, the goal is to establish a connection between these cities.

The game is round based, in each turn a player can perform
exactly one of these three actions:

(1) Draw train car cards from the deck or a set of five face up
cards. There are eight different card colors and a locomotive
card (joker). When a locomotive is drawn from the face up
cards only one card can be drawn, otherwise two.

(2) Claim one route: To claim a route one train car card per
route segment is required. All cards need to match the color
of the route on the map. If the route is gray, any color can
be used, but all cards still need to have the same color. Loco-
motives are joker and represent every color. After claiming
the route, the player places one train car per segment on the
board map.

(3) Draw three new destination tickets. At least one needs
to be kept.

The goal of the game is to reach the most points by claiming
routes and completing destination tickets. In addition to that you
can get bonus points by having the longest continuous path.

2.1 Ticket to Ride Web Version
There is an open source web version of TTR created by Kiryushin
Andrey [3]. The default map is a railway graph of Russia, but there
is also an option to import .map files to play on custom maps. Our
implementation outputs a compatible file that can be imported
there.

3 GAME GRAPH GENERATION
We use OpenStreetMap as our data source in order to extract train
stations and the railway network. Our goal is to generate a game
graph and export it as .map file that can be imported in the open
source web version of TTR. To achieve this, we need a list of train
stationswith a defined latitude and longitude and a list of undirected
edges connecting these stations. Each edge has a defined length
and width in segments. To simplify the process, the generation is

split into several algorithms. The code of our implementation can
be found at [2].

3.1 Quality Criteria
To ensure the generated game graph is suited as TTR map, we
define a list of criteria that must be followed during the generation
process.
Q.1 Graph is connected: If there are multiple connected com-

ponents, the largest connected component is chosen.
Q.2 Amount of stations, edges and segments: In the original

game, there are 36 different stations, 78 different edges and
307 total segments. To keep the game graph as similar as
possible to the original map (in terms of basic graph prop-
erties), it should have the same or very similar amount of
stations, routes and segments.

Q.3 Station position distribution: Selected Stations should
be distributed evenly over the game map. Otherwise some
parts of the board might be empty and others crowded with
stations. In addition to that each station needs to have a
sufficient distance to all other stations on the map.

Q.4 No edge intersections: The graph must be planar and no
edges must intersect.

Q.5 Minimal angle between edges: Adjacent edges must have
a minimum angle that results in a sufficient distance between
both edges.

Q.6 Edge properties: Each edge has a length of 1 to 6 segments
and a width of 1 or 2 segments, as in the original game.

Q.7 Segment length: All individual segments must have a simi-
lar length on the board map.

Q.8 Unique station names: Names are used to identify each
station and therefore must be unique.

3.2 Station Selection
Depending on the input data, there are up to several thousand
train stations that get extracted from the OSM file. For the final
game graph, we select the most relevant stations that are evenly
distributed over the map. For that, we define a station score 𝑓 (𝑠)
to capture the relevance of each train station by factoring in the
amount of rails of a station and the number of direct neighbors.
Then we selects train stations greedily so that the station score and
distance to already selected stations is maximized.

We implement a station selection algorithm with 36 iterations,
one for every station to be added. The input is a set of all stations
𝑆𝐴𝑙𝑙 , the output a set of selected stations 𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , |𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 | ≤ 36.
In the first iteration, we select the train station 𝑠𝑚𝑎𝑥 with the highest
station score 𝑓 (𝑠):

𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 B {𝑠𝑚𝑎𝑥 }, 𝑠𝑚𝑎𝑥 = argmax
𝑠∈𝑆𝐴𝑙𝑙

𝑓 (𝑠)

For all following iterations, we select the station where the score
multiplied by a distance factor 𝑑𝑖𝑠 𝑓 is maximized.

𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 B 𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑∪{𝑠𝑚𝑎𝑥 }, 𝑠𝑚𝑎𝑥 = argmax
𝑠∈𝑆𝐴𝑙𝑙 \𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑

𝑓 (𝑠)·disf(𝑠)

Before we are able to calculate this factor, we determine for each
station 𝑠 ∈ 𝑆𝐴𝑙𝑙 the minimum distance 𝑑𝑚𝑖𝑛 to all already selected
stations 𝑠′ ∈ 𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 . The function 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 returns the air-line

OSM Ticket to Ride IWCTS’24, October 29-November 1, 2024, Atlanta, GA, USA

distance between two stations.

𝑑𝑚𝑖𝑛 (𝑠) = min
𝑠′∈𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠, 𝑠′)

Then we can calculate the distance factor which is normalized by
dividing through the largest minimum distance:

𝑑𝑖𝑠 𝑓 (𝑠) = 𝑑𝑚𝑖𝑛 (𝑠)
max

𝑠∗∈𝑆𝐴𝑙𝑙 \𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑
𝑑𝑚𝑖𝑛 (𝑠∗)

A simple example of the station selection process is shown in fig. 2.
At themoment the distance factor has a linear and fixed influence

on the station score. In our implementation we added an exponent
𝑒 to modulate its effect. The higher the exponent, the faster does
disf(𝑠)𝑒 decrease for smaller minimum distances and the more
important becomes the equal distribution of the stations as a result,
we use 𝑒 = 2 as default.

3.3 Edge Selection
The next step is to choose a suited set of edges that connect the
selected stations. We start by extracting all railways from the OSM
file and then create a list of all possible routes between the selected
stations. Afterwards, we choose edges using a greedy algorithm
that calculates a score for every edge and selects the edge with the
lowest score until the target amount of edges is reached. The score
is calculated using three multipliers:

(1) The edge length: Shorter edges are selected first.
(2) The maximum perpendicular distance between the original

railway and the straight edge: Smaller distance, i.e less error
is better. An example is shown in Figure 3.

(3) The maximum angle to neighboring edges which are already
selected: This results in more spread out edges from the
station nodes.

Edges that intersect with already selected edges are discarded.

3.4 Edge Properties
The final step in the generation process is adding properties to each
edge. As defined in section 3.1 Q.6, each edge has a length of one
to six segments and a width of one or two segments (double-route).
Our goal is to define edges which have a high chance of being
required for a shortest path between two train stations as double
routes. As a result, these edges can be occupied by two players,
while edges with a width of one segment can only be used by one
player.

To achieve this, we calculate the shortest paths between all sta-
tions. Edges that are part in a lot of these paths are marked as
double-routes. The length in segments is determined to be roughly
linear to the length of the straight edge on the map. Small modifi-
cations ensure that the desired amount of segments on the map is
reached.

3.5 Results
Fig. 4 shows the result when using the OSM data of Germany
as input. In general, the results can be divided into two groups:
Datasets with a dense or sparse railway graph as input for the
algorithm.

100
80

70

40

70

40

(a) In this example our goal is to se-
lect four out of six train stations.
The numbers represent the station
score.

100
80

70

40

70

40

(b) Iteration 1: We select the station
with the highest station score 𝑓 (𝑠) .

0.2

0.6

1
0.4

0.7

16

42

40

28

28
(c) Iteration 2: We select the station
where 𝑓 (𝑠) · disf(𝑠) is maximized.
The dotted lines represent disf(𝑠) .

0.23

1 0.52

0.84

18.4

40

36.4

33.6
(d) Iteration 3: Third station is se-
lected.

0.28

0.63

1

22.4

44.1

40
(e) Iteration 4: Last station is se-
lected.

100
70

40

70

(f) Final result: A good compromise
between importance and distribu-
tion.

Figure 2: Example of the station selection process. Numbers
are rounded.

3.6 Dense Railway Network
A solid and connected passenger railway network is a good foun-
dation for great game graph results. Fortunately, this is the case in
most European countries and also other tested countries as India.
For such data sets, our algorithm produces a reliable result and is
able to reach the edge target of 78 edges.

3.7 Sparse Railway Network
The continent Africa was chosen in order to test the algorithm on a
dataset with a sparse railway network. The station graph consists of
several different (interrelated) components that are not connected

IWCTS’24, October 29-November 1, 2024, Atlanta, GA, USA Friedsam et al.

(a) Relative max. perpend. distance:
0.065

(b) Relative max. perpend. distance:
0.638

Figure 3: Visualization of different perpendicular distances.
Small dots represent train stations, large dots are selected
stations. Background: ©OpenStreetMap contributors.

Figure 4: Final result imported in the TTR web ver-
sion. Map tiles by Stamen Design under CC BY 3.0, Data
©OpenStreetMap contributors.

by each other. In order to generate a connected game graph, only
the largest connected component of Africa’s railway network is
used: The region in and around South Africa. The generated game
graph has a total of 51 edges instead of the target of 78. On the
one hand this is a general problem for countries with such sparse
railway graphs, on the other hand the algorithm is still capable to
generate a playable game graph.

4 CONCLUSION AND FUTUREWORK
We created an application capable of automatically generating
playable maps for the game Ticket to Ride using freely available
geographic data from OpenStreetMap. The output can be imported
into an open source web version of TTR. By defining a list of qual-
ity criteria, we ensure the generated graph is suited as playable
game map. In addition to that, our goal is to keep the created game
graph similar to the underlying railway network while keeping it
as similar as possible to the original game map in terms of relevant
game metrics. The algorithm is capable of generating results for
countries, continents or the whole planet.

4.1 Future Work
Two steps in the map generation process, coloring edges and the
generation of destination tickets, are performed after the import
by the open source version of TTR. For future work, an own im-
plementation of these two algorithms could be considered, which
might be able to achieve better results, specially adapted for our
generated game graph.

Also, we only consider the original version of TTR for our map
generation. There are other versions with different game graph
characteristics and also different rules that impose new challenges
to the creation process.

REFERENCES
[1] 2024. OpenStreetMapWiki. ttps://wiki.openstreetmap.org/wiki/About_OpenStreetMap.

[2] 2024. OSM-TicketToRide Source Code. https://gitlab.com/CHfCGS/osm-
tickettoride.

[3] K. Andrey. 2020. Ticket to Kotlin-building an online board game.
https://medium.com/gitconnected/ticket-to-kotlin-building-an-online-board-
game-8ac8466fe142.

[4] Fernando de Mesentier Silva, Scott Lee, Julian Togelius, and Andy Nealen. 2018.
Evolving maps and decks for ticket to ride. In Proceedings of the 13th International
Conference on the Foundations of Digital Games. 1–7.

[5] Patrick Lindemann. 2021. OpenStreetMap risk maps. , 44 pages. https://doi.org/
10.18419/opus-12011

[6] Alan R. Moon. 2019. Ticket to Ride, The Cross-Country Train Adventure
Game. https://ncdn0.daysofwonder.com/tickettoride/en/img/7201-T2R-Rules-
EN-2019.pdf

[7] Iain Smith and Calin Anton. 2022. Artificial intelligence approaches to build ticket
to ride maps. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36.
12844–12851.

accepted 27 September 2024

https://www.openstreetmap.org/copyright
https://doi.org/10.18419/opus-12011
https://doi.org/10.18419/opus-12011
https://ncdn0.daysofwonder.com/tickettoride/en/img/7201-T2R-Rules-EN-2019.pdf
https://ncdn0.daysofwonder.com/tickettoride/en/img/7201-T2R-Rules-EN-2019.pdf

	Abstract
	1 Introduction
	1.1 Related Work

	2 Ticket to Ride
	2.1 Ticket to Ride Web Version

	3 Game Graph Generation
	3.1 Quality Criteria
	3.2 Station Selection
	3.3 Edge Selection
	3.4 Edge Properties
	3.5 Results
	3.6 Dense Railway Network
	3.7 Sparse Railway Network

	4 Conclusion and Future Work
	4.1 Future Work

	References

